

PETUNJUK SKRIPSI KAJIAN LITERATUR

JURUSAN ILMU EKONOMI

PENGANTAR

Sesuai Surat Edaran Wakil Rektor 1 tanggal 23 April 2020 tentang kegiatan akademik di masa Pandemi Covid-19 yang menyatakan skripsi mahasiswa yang terhalang pandemi dapat diganti dengan kajian literatur dengan persetujuan pembimbing dan kepala program studi, berikut panduan singkat kajian studi literature yang dapat dianggap memenuhi beban studi 6 sks di Jurusan Ilmu Ekonomi. Jumlah publikasi yang direview secara detil minimal 15 publikasi.

Pilihan lain yang dapat dilakukan mahasiswa adalah skripsi dengan menggunakan data sekunder untuk menghindari kontak dengan responden. Mahasiswa juga boleh menulis paper degan standar publikasi (5000 - 6000 kata) dengan nama matakuliah ECO401 Tugas Akhir, tapi hanya berbobot 3 sks dan mahasiswa mesti menambah 3 sks lagi dari lebihan matakuliah pilihan untuk mencukupkan persyaratan sks sarjana. ECO401 cocok bagi mahasiswa yang memiliki lebihan beban matakuliah pilihan yang bernilai A.

PETUNJUK SINGKAT KAJIAN STUDI LITERATUR PENGANTI SKRIPSI

Gambar 1: Step Melakukan Kajian Studi Literatur (Fink, 2014)

ISI KAJIAN REVIEW LITERATUR

1. Pendahuluan

1.1. Latar Belakang

Anda menjelaskan latar belakang dan alasan tertarik mengkaji bidang yang ingin diteliti. Tunjukkan urgensi kajian ini dilakukan dan apa keperluan anda meneliti hal tersebut.

1.2. Perumusan Masalah

Anda menjabarkan permasalahan yang mengemuka pada bidang yang diteliti berdasarkan penjabaran latar belakang. Contohnya adanya kemungkinan gap antara teori dengan kenyataan di lapangan, atau apa yang sudah diketahui dan apa yang belum diketahui. Bahagian ini ditutup dengan kalimat-kalimat tanya yang akan menjadi pedoman dalam mereview.

1.3. Manfaat Penelitian

Jelaskan manfaat yang diperoleh jika pertanyaan penelitian tersebut terjawab.

2. Metodologi Review

Mereview literature berarti mengidentifikasi dan menginterpretasikan apa yang sudah diketahui tentang topik tertentu. Untuk mengevaluasi sebuah kajian literature, Anda mesti mempelajari kriteria untuk mengevaluasi kualitas sebuah penelitian.

2.1. Data Base

Kajian literature bergantung kepada data yang tersedia dari online bibliographic database, misalnya JSTOR, ScienceDirect, ProQuest, Web of Science, GoogleScholar, Social Science Citation Index, dan sebagainya. Memilih database bergantung dari pertanyaan penelitian yang mesti dijawab. Anda mesti menuliskan alasan memilih sumber bibliografi online yang dipakai untuk mendapatkan jurnal artikel, buku, atau publikasi lain yang akan di review.

2.2. Search terms

Pertanyaan penelitian yang jelas sangat menguntungkan Anda karena akan mengandung beberapa kata kunci (keyowords) yang digunakan untuk mencari literature dalam database. Anda mesti menyebutkan kalimat atau kata kunci yang digunakan untuk memilih literature yang akan direview. Pengetahuan tentang Bolean logic AND, OR, dan NOT juga membantu menyeleksi literature.

2.3. Practical Screening

Penelusuran awal akan menghasilkan sangat banyak literature terseleksi, namun hanya beberapa yang akan releven dengan pertanyaan penelitian. Anda mesti menjelaskan bagaimana metode anda menyeleksi literatur-literatur tersebut: apa kriteria suatu artikel akan dimasukkan untuk direview atau dikeluarkan dari review. Termasuk ke dalam kriteria practical screening criteria adalah bahasa yang digunakan publikasi, tipe publikasi (jurnal, buku, dsb), rentang waktu publikasi, penulis, responden, disain riset, dan sebagainya.

2.4. Methodological Screening

Methodological screening adalah proses seleksi publikasi berdasarkan kualitasnya secara keilmuan. Publikasi berkualitas tinggi menggunakan standar penelitan yang ketat. Untuk melakukan seleksi, Anda menjawab pertanyaan (i) apakah riset desainnya valid secara internal dan eksternal? (ii) apakah sumber data yang digunakan dapat diandalkan dan valid? (iii) apakah metode analisisnya bersesuaian dengan data? (iii) apakah kesimpulannya studinya berarti dan signifikan secara statistic? Termasuk ke dalam kriteria methodological screening adalah teknik sampling, data, dan metode analisis yang digunakan untuk menjawab pertanyaan penelitian. Sebahagian literature menggunakan pendekatan kuantitatif, sebahagian lain kualitatif, dan sebahagian lainnya menggunakan mixed-method, gabungan kualitatif dan

kuantitatif. Pilihan-pilihan pendekatan ini mesti cocok dengan pertanyaan penelitian yang diajukan setiap literature tersebut.

3. Ringkasan Literatur Terpilih

Setelah malakukan penyisiran literature, Anda akan berhadapan dengan pengelolaan (filing) literature tersebut. Penggunaan Bibliographic Software seperti EndNote, Mendeley, ProCite, dan Zotero sangat membantu pengorganisasiannya. Bahkan setiap database menyediakan fasilitas citation manager untuk mendownload literature dan menyajikan bibliografi dalam style yang diinginkan: Jurusan Ilmu Ekonomi mengikuti APA Style. Alasan penting lain menggunakan software adalah memudahkan Anda untuk akurasi dan update library.

3.1. Deskripsi Literatur

Setelah beberapa publikasi terpilih untuk direview, Anda mesti membaca secara seksama dan membuat ringkasannya yang minimal terdiri dari tujuan, metodologi, hasil, dan kritik anda terhadap setiap publikasi tersebut. Pada bagian ini Anda menuliskan ringkasan dari setiap publikasi yang direview satu per satu, minimal 15 publikasi. Membuat *Pitching Research* untuk setiap publikasi akan sangat membantu Anda untuk menuliskan ringkasan publikasi tersebut.

3.2. Tabulasi Pengelompokan

Setelah ringkasannya dicantumkan, setiap publikasi dikelompokkan berdasarkan pertanyaan penelitian atau sub pertanyaan penelitian. Pengelompokan itu ditabulasikan seperti:

	Measures	References (Data)	Main contribution (Indexes)	
	Firm's export diversification by product for a given country:	Mayer, Melitz, and Ottaviano (2014) (Country-firm-product level data: French Customs)		
Traditional measures	Increase of firms' market shares by product, i.e. each mono- or multi-product firm exports progressively more	Learge and Nefussi [2010] (Country-firm-product level data: Community Innovation Survey, National Intellectual Property Institute, European Patent Office, French Customs, French Products Classifica- tion, INSEE]	Evolution of product portfolios and low-wage competition – Pro-active effect (Concentration, Reallocation, and Inertia)	
of export performance: A focus on export diversification	Sector's export diversification for a given country: Reallocation of resources towards the most productive sec- tors	Imbs and Wacziarg [2003] (Country-sector level data: International Labor Office, United Nations Industrial Development Organisation for Economic Cooperation and Development)	Sectoral concentration and level of per capita income – U-shaped curve (Measures of sectoral concentration such as Gini or Herfind- ahl indexes)	
	Country's export diversification by product: Reallocation of resources towards the most performant	Cadot, Carrère, and Strauss-Kahn [2011] (Country-product level data: UN Comtrade)	Extensive/intensive margins and hump-shaped curve – Diversification cones (Theil's entropy index)	
	products within or between firms for a given country	Cheptea, Fontagné, and Zignago [2014] (Country-product level data: BACI)	Composition effects, pure performance effect and variety of exported products – Reshaping of the world market (Shift-share methodology)	
	Export sophistication: New way of classifying products based on the level of	Lall, Weiss, and Zhang [2006] (Country-product level data: UN Comtrade, World Bank)	Characteristics of exporter countries and promotion of exports – Individual strategies of economic performance (Unique sophistication score)	
	income in each exporter country, and on the revealed com- parative advantage of each exporter country for each given product	Hausmann, Hwang, and Rodrik (2007) (Country-product level data: UN Comtrade, World Bank) Applications: Kumakura (2007); Yao (2009); Jarreau and Poncet (2012)	Implied productivity and revealed comparative advantage – Self-discovery – Quality spectrum <i>PRODY</i> and <i>EXPY</i>)	
		Hidalgo, Klinger, Barabasi, and Hausmann [2007] (Country-product level data: World Trade Flows)		
New measures of export performance	Product space: Network of relatedness between each pair of products	Hausman and Kinger (2007, 2008 a&b, 2010 a&b): Hausmann, Kinger, and Lopez-Calik (2010): Usui and Abdon (2010): Abdon and Felipe [2011): Bayudan-Daoucyury (2012): Boschma, Minondo, and Navarro (2013): Kali, Reyes, McGee, and Shireil [2013): Boschma and Capone [2014): Co Turcoand Maggioni [2014]: Poncet and Starosta de Waldemar [2015]	Network of relatedness between products and productive structure - Core and periphery - Exports upgrading (Revealed proximity, density index)	
	Economic complexity: Structure of the global network linking the country to its products and its productive capabilities	Hausmann and Hidalgo [2009, 2011a, 2011b] [Country-product level data: World Trade Flowal Applections: Hidalgo [2009, 2011]: Felipe, Kumar, Abdon, and Bacate [2012]: Poncer and Starosta de Waldemar [2013a, 2013b] Tacchella, Cristelli, Caldarelli, Gabrielli, and Pietronero [2013]	Bipartite, tripartite network and economic development - Productive capabilities (Method of reflections: Country diversification and product ubiquity)	

atau

Table-1: Evidences of EKC estimation studies for CO₂ emissions

Author(s)	Context	Power of Income	Type of Data	Methodology	Shape of EKC	Turnaround Point(s)
Shafik and Bandyopadhyay (1992)	149 countries (1960- 1990)	Cubic	Panel	Panel regression	Monotonically Increasing	NA	
Shafik (1994)	149 countries (1960- 1990)	Cubic	Panel	Panel regression	Monotonically Increasing	NA	
Holtz-Eakin and Selden (1995)	130 countries (1951- 1986)	Quadratic	Panel	Panel regression	Inverted U-shaped	35,428	
Cole et al. (1997)	7 countries (1960- 1991)	Quadratic	Panel	Panel regression	Inverted U-shaped	Model I Model II	62,700 25,100
Moomaw and Unruh (1997)	16 countries (1950- 1992)	Cubic	Panel	Panel regression	N-shaped	a. 12,813 b. 18,133	
	United Nations (1971-1989)	Quadratic	Panel	Panel regression	Inverted U-shaped	Model I	3.94
A mass and Chamman (1000)					Inverted U-shaped	Model II	4.62
Agras and Chapman (1999)					Monotonically Increasing	Model III	NA
					Inverted U-shaped	Model IV	2.60
	110 countries (1960- 1996)	Quadratic	Panel	Panel regression	Inverted U-shaped	All countries	16,646 15,073
Galeotti and Lanza (1999)						Annex I Countries	17,855 17,961
						Non-Annex I	21.757
						Countries	19,340
Magnani (2001)	152 countries (1970- 1990)	Cubic	Panel	Panel regression	No EKC	NA	
Roca et al. (2001)	Spain (1973-1996)	Cubic	Time Series	OLS	No EKC	NA	
Hill and Magnani (2002)	156 countries (1970- 1990)	Cubic	Panel	Pooled OLS	N-shaped	a. 3,007.01 b. 721,919.40	
Lindmark (2002)	Sweden (1870-1997)	Quadratic	Time Series	Kalman Filter	No EKC	NA	
Day and Grafton (2003)	Canada (1958-1995)	Cubic	Time Series	OLS	N-shaped	a. 19,133.10 b. 20,760.86	

4. Sintesis Literatur Terpilih

Bagian ini merupakan inti dan produk final dari kajian literatur. Publikasi terpilih yang sudah diringkaskan pada bagian terdahulu disintesiskan secara deskriptif. Sintesis deskiptif ini merupakan interpretasi anda terhadap temuan-temuan dalam publikasi yang direview. Anda mesti mampu menjelaskan 4 hal: (i) kondisi terkini pengetahuan (state of the art) tentang pertanyaan penelitian Anda, (ii) justifikasi kebutuhan penelitian seperti apa yang mesti

dilakukan ke depan, (iii) penjelasan temuan-temuan atas jawaban pertanyaan penelitian Anda, dan (iv) deskripsi kualitas riset yang ada.

- 5. Kesimpulan
 - 5.1. Ringkasan Penelitian

Cukup jelas.

5.2. Rekomendasi

Identifikasi ide-ide penelitian ke depan yang perlu dilakukan berdasarkan hasil kajian literatur Anda.

Daftar Pustaka

Fink, A. (2014). Conducting Research Literature Reviews: From the Internet to Paper. Sage Publication.

Lampiran: contoh paper hasil kajian literature yang merupakan laporan terhadap bagian hasil Sintesis Literatur Terpilih.

Attributes, Environment Factors and Women Entrepreneurial Activity: A Literature Review

Isidore Ekpe Norsiah Mat & Razli Che Razak College of Business, Universiti Utara Malaysia, 06010 Sintok, Darul Aman, Malaysia E-mail: ekpe60@yahoo.com, norsiah@uum.edu.my, raz1152@uum.edu.my

Received: February 23, 2011 Accepted: April 6, 2011 doi:10.5539/ass.v7n9p124

Abstract

Purpose: The purpose of this study is to examine the effect of individual attributes and business environment factors on the entrepreneurial activity of women entrepreneurs. Individual attributes such as education, working experience, attitude towards risk-taking, affect women entrepreneurial activity. Economic constraints such as lack of credit due to lack of asset collaterals and socio-cultural barriers, lack of savings due to low household income, and lack of labour skills due to low educational level also affect women entrepreneurial activity. The effect of these factors on entrepreneurial activity is worth studying because entrepreneurship development is considered a vital link to an overall economic growth of a nation through its positive impact on economic development especially at the grassroots. However, limited studies have reviewed literatures on individual attributes and business environment factors on the entrepreneurial activity of women entrepreneurs. This is the focus of this study.

Methodology: The paper is a descriptive study that reviews literature on individual attributes and environment factors on women entrepreneurial activity.

Conclusion: The paper concludes that environment factors exert much more influence on women entrepreneurial activity than individual attributes.

Research limitation: The paper is limited to a literature review that may need further research by using a framework to investigate the factors on entrepreneurial activity.

Practical implication: It shows the need for the government to support entrepreneurs through adequate provision of micro-finance.

Originality: The study is a new way to look at crucial factors affecting entrepreneurial activity in a country.

Paper type: This is a research paper.

Keywords: Attributes, Environment factors, Women entrepreneurial activity

1. Introduction

The identification and exploitation of entrepreneurial opportunity for business start-up or diversification, and subsequent performance depends on the individual attributes of the entrepreneurs and the business environment. Examples of such business environment are competition and lack of micro-finance factors like credit. Individual attributes play a vital role in enterprise activity because entrepreneurship involves risk, and attitude towards risk differ between individuals (Shane, 2003).

Despite the role of individual attributes in exploiting entrepreneurial opportunity for new business or business diversification by women entrepreneurs; however, recent studies have shown that business environment factors such as economic, financial and socio-cultural, plays a greater role in the exploitation of entrepreneurial opportunities by women entrepreneurs (Kuzilwa, 2005; Shastri & Sinha, 2010; Vob & Muller, 2009). For example, Kuzilwa (2005), Shastri & Sinha, (2010) argued that though all conditions for exploiting entrepreneurial opportunity such as education, experience, and energy may exist, but the environmental constraints such as lack of credit, and societal discriminations especially in developing countries, may hinder the entrepreneur. The study is hinged on the fact that there is scarcity of research that reviews literatures on individual attributes and business environment factors on the entrepreneurial activity of women entrepreneurs (e.g Kuzilwa, 2005; Shastri & Sinha, 2010).

2. Literature Review

The theories most commonly applied in research on entrepreneurship are McClelland's (1961) theory of the need to achieve, and Rotter's (1966) locus of control theory. McClelland's theory suggests that individuals with a strong need to achieve often find their way to entrepreneurship. Rotter's theory suggests that the locus of control of an individual can be seen as either internal or external. The internal control expectation is related to learning and thus motivates and supports active striving, while the external control expectation impedes learning and encourages passivity. An internal control expectation is usually associated with entrepreneurial characteristics (Littunen, 2000). The pull/push model is also a common way of explaining different motives behind why women start a business (Brush, 1999; Buttner & Moore, 1997). Push factors refer to necessities such as unemployment, glass ceiling, redundancy, recession, financial reasons (inadequate family income), dissatisfaction with being employed, or the need to succeed better than others as entrepreneurs. According to Rotter's theory, the locus of control of an individual manifests in the need for achievement, financial reasons (desire for profit-wealth), personal development, self-fulfilment, social status and power (Hansemark, 1998; Glancey et al., 1998). However, the situation is rarely a clear-cut selection of pull or push factors, and the factors are often combined (Brush, 1999).

2.1 Attributes

The characteristics or attributes of women entrepreneurs are regarded as the pull factors in entrepreneurial activity (Hisrich, Peters & Shepherd, 2008; Kuzilwa, 2005; North, 1990). These include demography such as age and education, type of employment, type of industry, type of company, financial background and work experience (Harrison & Mason, 2007; Peter, 2001; Okpukpara, 2009). They are regarded as the human capital or internal factors to be contributed by the entrepreneur in exploiting entrepreneurial opportunity for business performance. The ones most critical to women entrepreneurs which are discussed below are education, attitude and experience.

Education: Education is one of the characteristics of women entrepreneurs that can affect their business performance, and literature supports that education and managerial experience may contribute to women's business growth but certainly has positive impact on entrepreneurial performance (Gatewood, Brush, Carter, Greene & Hart, 2004). They also stated that human capital is not only the result of formal education and training but also include experience and practical learning derived from previous paid employment or managerial position, and it is a vital condition for technological innovation (Gatewood et al., 2004). According to Wit and Van (1989), individuals with a high level of education are more likely to engage in entrepreneurship. An individual with more work experience, a higher level of education, more knowledge of the market and business practice is more likely to be able to identify an opportunity for starting a new business. On the other hand, it may be expected that people with a low level of education have more difficulties finding a paid job, and therefore see no other possibility than to engage in entrepreneurship. Hence, high educated people are more likely to pursue opportunity-based ventures, while less educated entrepreneurs are more involved in necessity entrepreneurship (Bhola et al., 2006).

In a related study; education, experience, age and social networks were also found to have significant positive influence on entrepreneur's business performance in USA (Shane, 2003), yet women entrepreneurs in developing countries have low educational levels than their counterparts in developed countries (Ibru, 2009). More specific to women studies done by Kavitha et al. (2008), women were found to be more matured in terms of age, level of education and equipped with work experience in comparison to non-entrepreneurs. In USA for example, most women entrepreneurs had tertiary education followed by high school education (Gatewood et al; 2004); though in France for example, a higher percentage of women entrepreneurs had high school education and were in their early 30s (Carter & Shaw, 2006).

Attitude: Attitude towards risk-taking is another crucial attribute of entrepreneurs especially women. This is because enterprise involves risk-taking, and risk-averse entrepreneur is less likely to exploit entrepreneurial opportunity (Shane, 2003). Attitude towards risk-taking is entrepreneur's ability and willingness to engage in risky activity (Shane, 2003). Studies have found that attitude and behavioural intention are positively related (Crisp & Turner, 2007) and that attitude towards behaviour leads to intention which eventually leads to actual behaviour (Ajzen, 1991).

Experience: Literature asserted that business experience is one of the vital entrepreneurial characteristics (Antoncic, 2006), and evidences support the fact that a minimum of two to three years business experience is sufficient to assess an entrepreneur (Antoncic, 2006; Kuzilwa, 2005; Carter & Shaw, 2006). Other characteristics

of women entrepreneurs include: strong desire for independence, innovation, risk-taking, resourcefulness, business skills, knowledge, and networks (Salman, 2009). Business knowledge includes knowledge of top players in the industry, knowledge of product range and market trends. Business skills include technical and managerial skills which could be acquired through training, seminars and workshops. Experience could be acquired through formal education and business knowledge (Salman, 2009).

The need for achievement and autonomy, risk-taking, control of business and self-efficacy are other vital characteristics of women entrepreneurs (Shane, 2003). Demography, skills and reputation are also essential attributes of women entrepreneurs as single women had less income and less guarantees for loan. Family size also affects women entrepreneurial activity. Despite the fact that women with one or two children were likely to participate in entrepreneurial activity, in Pakistan for example, in order to generate income to support their families (Salman, 2009), it was however discovered that most women with family sizes of more than five people were likely to become entrepreneurs (Allen, Elam, Langowitz & Dean, 2008; Lawal, Omonona, Ajani & Oni, 2009); and large family size is common in developing countries (Lakwo, 2007). Again, most women aged between 25-34 years were found in the early- stage entrepreneurship (Allen et al., 2008). Innovation and decision-making ability are other characteristics (Cunha, 2007). Ambition, self-confidence and high level of energy have also been recognized as vital entrepreneurial characteristics (Idris & Mahmood, 2003). Having the right motive of venturing into business has been found to be one of the attributes of women entrepreneurs. The right motive should be the first determinant before entering into business (Mitchell, 2004; Porter & Nagarajan, 2005; Shane, 2003). Self-evaluation and intuition are also crucial characteristics (Shane, 2003). However, focusing on education, experience and attitude towards risk-taking as vital individual attributes of women entrepreneurs, we therefore make the following proposition:

P1: Attributes of women entrepreneurs (education, experience, attitude towards risk-taking) affect women entrepreneurial activity.

2.2 Environment factors

Women entrepreneurs face peculiar challenges in an attempt to achieve success (Hatcher, Terjersen & Planck, 2007) and women in less developed countries face much more barriers to formal economic participation than those in developed countries (Allen et al; 2008). Women face unique obstacles in starting and growing their firms such as lack of skill or training, limited access to capital or credit, lack of savings and social networks, and limited choice of industry (Akanji, 2006; Ibru, 2009; Lakwo, 2007; Martin, 1999; Ojo, 2009; Peter, 2001).

Gender-related discriminations, especially in developing countries, occasioned by socio-cultural factors also pose hindrance to women entrepreneurial activity (Otero, 1999). Such discriminations are in the area of distribution of social wealth such as education and health (May, 2007; Mayoux, 1999; Otero, 1999; Porter & Nagarajan, 2005; Roomi & Parrot, 2008).

The type of industry and the industrial differences also affect entrepreneurial performance, and people in knowledge industry have high propensity to access information which leads to business performance in terms of market size and growth (Shane, 2003). Incidence of informal sector investment was higher among firms in the manufacturing, wholesale and retail, and knowledge industry in UK and Canada respectively (Carter & Shaw, 2006; Riding, 2006). Women entrepreneurs are mostly found in agriculture, services such as education and health, retail and manufacturing where they had experience or where experience was not necessary (Akanji, 2006; IFC, 2007; Okpukpara, 2009). Such businesses are most active in the urban centres, except agriculture (Carter & Shaw, 2006). The concentration of women entrepreneurs in these sectors is due to their low level of education because higher educational attainment leads to the possibility of self-employment in economically rewarding industry (Stohmeyer, 2007).

The business environment factors pose a lot of challenges to business because they are outside the control of the business owner. Such environmental constraints which are sometimes volatile include the economic, financial, legal, political and socio-cultural factors. These factors play a greater role in entrepreneurial activity because, despite the possession of the requisite personal entrepreneurial characteristics such as education, right attitude to risk, motivation, energy and working experience; the environment may hinder women entrepreneurs from exploiting entrepreneurial opportunities (Kuzilwa, 2005; Shastri & Sinha, 2010; Vob & Muller, 2009).

Business environment factors that seem to be more important to the success of women entrepreneurial activity is financial aid or credit accessibility. Credit or loan is very necessary for new and growing enterprises. Banks, not surprisingly, are inclined toward low-risk ventures. Women were more likely to observe that they were not given due respect by financial institutions; they did not think their account managers were easy to talk to; they reported that they were not made to feel comfortable by financial institutions; and they perceived that bank employees

discriminated against women. Bankers' pessimistic view of women's credit worthiness fostered a reluctance to grant credits. This constituted another obstacle to female entrepreneurship.

On the positive side, however, the popularity of the micro-credit strategy propelled a global movement toward making micro-loans available to people all over the world. Advocacy groups, existing banks, NGOs, and alliances such as the International Coalition on Women and Credit, RESULTS Education Fund (USA), Women's World Bank, Grameen Bank (Bangladesh), Accion International (USA), FINCA (USA), SEWA (India), VOICE (Africa) and many others promoted the idea of micro-credit micro-enterprises in policy circles. In Georgia, women made up 30% of the borrowers at the Micro-finance Bank of Georgia with an average loan size of \$7,000. In Ukraine, women obtained 38% of EBRD Small Business Fund loans and women represented 35% of the entrepreneurs purchasing newly privatized land parcels. In Malawi, a micro-finance regulatory framework and strategy were launched in 1998. In Bangladesh, Grameen Bank reported a loan repayment rate of 95-98% from women entrepreneurs (Accion International, 1997; Counts, 1996; Estes, 1999; Shawa, 1999).

The importance of access to credit is identified as a major barrier to entry into self-employment throughout the world. Women setting up micro-enterprises, SMEs, or formal large-scale businesses all encountered varying degrees of difficulty in obtaining capital, collateral, and fair lending terms. In fact, according to a study by Clark and Kays (1995), 41% of entrepreneurs reported that lack of money is the greatest obstacle to starting a business, and 47% cited lack of capital as the greatest barrier to business growth.

Riding (2006) stated that higher percentage of enterprises especially in Canada mostly seek external finance than use personal savings. Much dependence on credit by entrepreneurs, especially women, is due to their inability to raise capital through personal savings (Brana, 2008). The problem is much pronounced in developing countries due to unemployment and gender discrimination in high-paid jobs (Brana, 2008; Carter & Shaw, 2006). However, Gatewood et al. (2004) contended that women use more of personal savings than credit, to start and grow their enterprises.

A relationship also exist between credit and opportunity for entrepreneurial activities of women entrepreneurs. Credit provides the needed opportunity for entrepreneurs to start or improve business in order to make profit and improve their lives (Allen et al., 2008; Brana, 2008; Lans et al., 2008; Majumdar, 2008; Roslan & Mohd, 2009; Salman, 2009; Shane, 2003; Tata & Prasad, 2008). There is a positive relationship between credit and opportunity for entrepreneurial activity. For example, credit was found to have positive effect on opportunity for entrepreneurial activity of women in USA (Allen, 2000), Nigeria (Akanji, 2006) and France (Brana, 2008).

Salman (2009) also argued that loan is not usually good for business start-up but for growing or existing enterprises due to inability of the new business to pay back the loan at the initial business stage. While Karnani (2007) contended that credit does not lead to women's improved welfare rather the government should create jobs for the women. These arguments aside, numerous evidences abound in the literature that credit has positive impact on enterprise performance. For instance, previous studies found that credit had positive impact on enterprise profit in Nigeria, Nicaragua, Canada and Croatia (e.g. Martin, 1999; Ojo, 2009). However, focusing on credit as a vital micro-finance factor, we therefore make the following proposition:

P2: Credit affects women entrepreneurial activity.

In order to examine the composite effect of individual attributes and business environment factors on women entrepreneurial activity, we therefore make the following proposition:

P3: Attributes of women entrepreneurs (education, experience, attitude towards risk-taking) and credit affect women entrepreneurial activity.

3. Conclusion

Individual attributes such as education, experience and attitude toward risk-taking are vital to entrepreneurial activity of women entrepreneurs. Business environment factors, for example credit is also important for entrepreneurial activity. However, literatures have lent strong support to the fact that business environment factors such as credit accessibility exert much more influence on the entrepreneurial activity of women entrepreneurs than individual attributes. This is so because an entrepreneur may have the requisite characteristics for exploiting entrepreneurial opportunity but the environmental constraints may constitute a great hindrance.

Acknowledgement

We like to thank the members of the proceeding and publications committee (among whom is Dr. Yuslizawati Mohd Yusoff), the editorial board, the organizers and participants of the 2nd International Accounting and

Business Conference 2011, University Teknologi MARA, Malaysia for reviewing this paper and making useful comments especially during the presentation.

References

Ajzen, I. (1991). The Theory of Planned Behaviour. *The Organizational Behaviour and Human Decision Processes*, 50, 179-211. doi:10.1016/0749-5978(91)90020-T, http://dx.doi.org/10.1016/0749-5978(91)90020-T

Akanji, O. O. (2006). Microfinance as a strategy for poverty reduction. *Central Bank of Nigeria Economic and Financial Review*, 39 (4).

Allen, D. W. (2000). Social networks and self-employment. *Journal of Socio-Economics*, 29 (1), 487-501. doi:10.1016/S1053-5357(00)00086-X, http://dx.doi.org/10.1016/S1053-5357(00)00086-X

Allen, I. E., Elam, A., Langowitz, N. & Dean, M. (2008). 2007 Global Entrepreneurship Monitor report on women and entrepreneurship. Babson College: The Centre for Women's Leadership.

Antoncic, B. (2006). Impacts of diversification and corporate entrepreneurship strategy making on growth and profitability: A normative model. *Journal of Enterprising Culture, 14* (1), 49-63. doi:10.1142/S0218495806000040, http://dx.doi.org/10.1142/S0218495806000040

Brana, S. (2008). Microcredit in France: Does gender matter? 5th Annual Conference-Nice. European Microfinance Network.

Carter, S. & Shaw, E. (2006). *Women's business ownership: Recent research and policy developments.* UK: Small Business Service.

Clark, P., & Kays, A. (1995). Enabling entrepreneurship: Microenterprise development in the United States. Washington, DC: The Aspen Institute.

Counts, A. (1996). Give us credit. New York: Times Books.

Crisp, R. J., & Turner, R. N. (2007). Essential Social Psychology. London: SAGE Publication.

Cunha, M. P. (2007). Entrepreneurship as decision-making: Rational, intuitive and improvisational approaches. *Journal of Enterprising Culture, 15* (1), 1-20. doi:10.1142/S0218495807000022, http://dx.doi.org/10.1142/S0218495807000022

Estes, V. (1999, November 18). *Women & business development: promoting economic growth and job creation*. USAID/Europe & Eurasia Bureau: author.

Gatewood, E. J., Brush, C. G., Carter, N. M., Greene, P. G. & Hart, M. M. (2004). *Women entrepreneurs, growth and implications for the classroom*. USA: Coleman Foundation whitepaper series for the USA Association for Small Business and Entrepreneurship.

Harrison, R. T. & Mason, C. M. (2007). Does gender matter? Women business angels and the supply of entrepreneurial finance. *Entrepreneurship Theory and Practice*, 31 (3), 445-472. doi:10.1111/j.1540-6520.2007.00182.x, http://dx.doi.org/10.1111/j.1540-6520.2007.00182.x

Hatcher, C., Terjesen, S. & Planck, M. (2007). Towards a new theory of entrepreneurship in culture and gender: A grounded study of Thailand's most successful female entrepreneurs. Australia: AGSE.

Hisrich, R. D., Peters, M. P. & Shepherd, D. A. (2008). *Entrepreneurship* (7th ed.). New York: McGraw-Hill Co. Inc.

Ibru, C. (2009). Growing microfinance through new technologies. Federal University of Technology, Akure, Nigeria.

Idris, A. M. M. & Mahmood, R. (2003). *Bank managers' perceptions of the characteristics of successful entrepreneurs*. Malaysian Management Review. [Online] Available: http://www.google.com (August 25, 2009)

International Finance Corporation (IFC). (2007). Gender entrepreneurship markets, GEM country brief. Afghanistan: GEM.

Karnani, A. (2007). *Microfinance misses its mark*. Stanford Social Innovation Review. [Online] Available: http://www.ssireview.org/articles (February 18, 2009)

Kavitha, R., Anantharaman, R.N. & Sharmila, J. (2008). Motivational factors affecting entrepreneurial decision: A comparison between Malaysian Women Entrepreneurs and Women Non-entrepreneurs. *Communications of the IBIMA*, 2, 85-89.

Kuzilwa, J. (2005). The role of credit for small business success: A study of the National Entrepreneurship Development Fund in Tanzania. *The Journal of Entrepreneurship, 14* (2), 131-161. doi:10.1177/097135570501400204, http://dx.doi.org/10.1177/097135570501400204

Lakwo, A. (2007). *Microfinance, rural livelihood, and women's empowerment in Uganda*. African Studies Centre Research Report 85/2006. [Online] Available: http://www.ascleiden.nl/pdf/rr85lakwo.pdf (August 3, 2009)

Lans, T., Hulsink, W., Baert, H. & Mulder, M. (2008). Entrepreneurship education and training in a small business context: Insights from the competence-based approach. *Journal of Enterprising Culture, 16* (4), 363-383. doi:10.1142/S0218495808000193, http://dx.doi.org/10.1142/S0218495808000193

Lawal, J. O., Omonona, B. T., Ajani, O. I. Y., & Oni, O. A. (2009). Effects of social capital on credit access among cocoa farming households in Osun State, Nigeria. *Agricultural Journal*, 4 (4), 184-191.

Majumdar, S. (2008). Modelling growth strategy in small entrepreneurial business organizations. *The Journal of Entrepreneurship*, 17 (2), 157-168. doi:10.1177/097135570801700204, http://dx.doi.org/10.1177/097135570801700204

Martin, T. G. (1999). Socio-economic impact of microenterprise credit in the informal sector of Managua, Nicaragua. [Online] Available: http://scholar.lib.vt.edu/thesis/ (January 21, 2009)

May, N. (2007). Gender responsive entrepreneurial economy of Nigeria: Enabling women in a disabling environment. *Journal of International Women's Studies*, 9 (1).

Mayoux, L. (1999). From access to empowerment: Gender issues in microfinance. *Women's Caucus Position Paper for CSD-8; 2000.* CGAP.

Mitchell, B. C. (2004). Motives of entrepreneurs: A case study of South Africa. *Journal of Entrepreneurship, 13* (1), 168-183.

North, D. C. (1990). *Institutions, institutional change and economic performance*. Cambridge, UK: Cambridge University Press.

Ojo, O. (2009). Impact of microfinance on entrepreneurial development: The case of Nigeria. Faculty of Administration and Business, University of Bucharest, Romania.

Okpukpara, B. (2009). Microfinance paper wrap-up: Strategies for effective loan delivery to small scale enterprises in rural Nigeria. *Journal of Development and Agricultural Economics, 1* (2), 41-48.

Otero, M. (1999). Bringing development back into microfinance. Latin America: ACCION International.

Peter, B. K. (2001). Impact of credit on women-operated microenterprises in UASIN GISHU district, Eldoret, Kenya. In P. O. Alila & P. O. Pedersen (eds). (2001). *Negotiating social space: East African microenterprises*. ILO, Geneva, database. [Online] Available: http://books.google.com.my/book? (September 18, 2009)

Porter, E. G. & Nagarajan, K. V. (2005). Successful women entrepreneurs as pioneers: Results from a study conducted in Karaikudi, Tamil Nadu, India. *Journal of Small Business and Entrepreneurship*, 18 (1), 39-52.

Riding, A. (2006). Small Business financing profiles. Canada: SME Financing Data Initiative.

Roomi, M. A. & Parrot, G. (2008). Barriers to development and progression of women entrepreneurs in Pakistan. *The Journal of Entrepreneurship, 17* (1), 59-72. doi:10.1177/097135570701700105, http://dx.doi.org/10.1177/097135570701700105

Roslan. A. H. & Mohd, Z. A. K. (2009). Determinants of microcredit repayment in Malaysia: The case of Agrobank. *Humanity and Social Sciences Journal*, 4 (1), 45-52.

Salman, A. (2009). *How to start a business: A guide for women*. Pakistan: Centre for International Private Enterprise, Institute of National Endowment for Democracy, affiliate of the USA Chamber of Commerce.

Shane, S. (2003). A general theory of entrepreneurship: The individual-opportunity nexus. UK: Edward Elgar.

Shastri, R. K. & Sinha, A. (2010). The socio-cultural and economic effect on the development of women entrepreneurs (with special reference to India). *Asian Journal of Business Management, 2* (2), 30-34.

Shawa, M. (1999). A forum and study on policy options for promoting the economic empowerment of women: The case of Malawi. Lilongwe, Malawi: United Nations Economic Commission for Africa and Malawi's Ministry of Women, Youth, and Community Services

Stohmeyer, R. (2007). Gender gap and segregation in self-employment: On the role of field of study and apprenticeship training. Germany: German Council for Social and Economic Data (RatSWD).

Tata, J. & Prasad, S. (2008). Social capital, collaborative exchange and microenterprise performance: The role of gender. *International Journal of Entrepreneurship and Small Business*, 5 (3/4), 373-385. doi:10.1504/IJESB.2008.017310, http://dx.doi.org/10.1504/IJESB.2008.017310

Vob, R. & Muller, C. (2009). How are the conditions for high-tech start-ups in Germany. *International Journal of Entrepreneurship and Small Business*, 7 (3), 285-311.

Wit, G. & Van Winden, F. (1989). An empirical analysis of self-employment in the Netherlands. *Small Business Economics*, 1 (4), 263-272. doi:10.1007/BF00393805, http://dx.doi.org/10.1007/BF00393805

STUDI LITERATUR TENTANG RISET ZAKAT

Aam Slamet Rusydiana & Salman Al-Farisi

Sharia Economic Applied Research & Training (SMART) Consulting Perum Mutiara Bogor Raya Blok G4 No.3 Katulampa, Bogor, Jawa Barat E-mail: aamsmart@gmail.com

Abstract. *Literature Study on Zakah Research.* Zakah is not only as religious rituality but also could touch humanity aspect by empowering its potency to maximize public wealth. The research related to zakah is still lacking compare to Islamic banking research. This study review on research around zakah. The study use descriptive statistical analysis based on 100 journal publications related to zakah, both national and international journal. The entire sample journal publications have published last 5 years from 2011 to 2015. Results show that the zakah research is still dominated by the discussion of zakah institution (26%), followed by distribution of zakah(22%), zakah management (21%) and poverty (20%). The last theme is about zakah collection (11%). In addition, comparison of quantitative research and mixed methods are still far less than the qualitative approach.

Keywords: Zakah Literatures, Zakah Issue, Research on Zakah

Abstrak. Studi Literatur tentang Riset Zakat. Zakat tidak hanya sebagai ritual keagamaan tetapi juga bisa menyentuh aspek kemanusiaan dengan memberdayakan potensinya untuk memaksimalkan kekayaan publik. Penelitian yang berkaitan dengan zakat masih kurang jika dibandingkan dengan penelitian perbankan syariah. Penelitian ini mengkaji penelitian-penelitian tentang zakat. Penelitian ini menggunakan analisis statistik deskriptif berdasarkan 100 publikasi jurnal yang berkaitan dengan zakat, baik jurnal nasional maupun internasional. Sampel diambil dari jurnal yang terbit 5 tahun terakhir dari 2011 hingga 2015. Hasil penelitian menunjukkan bahwa penelitian zakat masih didominasi oleh pembahasan lembaga zakat (26%), diikuti oleh distribusi zakat (22%), manajemen zakat (21%) dan kemiskinan (20%). Tema terakhir adalah tentang koleksi zakat (11%). Selain itu, perbandingan antara penelitian kuantitatif dan metode gabungan masih jauh lebih sedikit dibandingkan dengan pendekatan kualitatif.

Kata Kunci: Literatur Zakat, Isu Zakat, Penelitian Zakat

Pendahuluan

Zakat sebagai salah satu rukun Islam mempunyai ciri khas yang berbeda karena ia tidak hanya berdimensi vertikal seperti rukun Islam lainnya—yaitu hubungan ibadah kepada Allah Swt.—tetapi juga berdimensi horizontal yaitu hubungan ibadah terhadap sesama manusia. Dimensi horizontal ini mempunyai efek yang luas sehingga secara sosial diharapkan dapat membangun masyarakat madani atas dasar silaturahmi dan secara ekonomi, menurut Mustaq Ahmad, adalah sumber utama kas negara dan sekaligus merupakan sokoguru dari kehidupan ekonomi yang dicanangkan Alquran.

Zakat merupakan injeksi dalam perekonomian sehingga memunculkan kekuatan baru dalam penghimpunan investasi yang signifikan sehingga akan mendorong peningkatan produksi dalam siklus perekonomian suatu daerah. Bahkan secara makro zakat akan dapat meningkatkan *agregat demand* karena meningkatnya *purchasing power* (daya beli) masyarakat atas barang-barang dan jasa. Ketika zakat diiplementasikan secara tersistem, dalam artian bahwa zakat adalah peraturan yang mengikat dalam diri setiap Muslim dengan peran pemerintah sebagai regulator sekaligus badan amil zakatnya, maka secara pasti akan menyebabkan munculnya lapangan-lapangan kerja baru yang sangat luas sehingga setiap warga negara mempunyai lahan pekerjaan dan otomatis akan terjadi migrasi pengangguran menjadi karyawan dalam jumlah yang sangat besar.

Zakat juga berperan penting dalam mewujudkan terciptanya keadilan dalam bidang ekonomi dimana seluruh anggota warga negara mempunyai sumber pendapatan dan *income* untuk memenuhi kebutuhan sehari-hari dalam rangka menjalankan roda kehidupan

Naskah diterima: 8 November 2015; Direvisi: 2 Juni 2016; Disetujui untuk diterbitkan: 10 Juni 2016.

di muka bumi ini. Oleh karena itu diperlukan lapangan pekerjaan yang cukup sebagai sumber atau ladang pendapatan yang halal. Dengan zakat maka akan terkumpul dana baru *(fresh capital)* yang bebas dari tekanan-tekanan apapun karena memang bersifat sukarela dan merupakan hak para kaum miskin.

Saat ini institusi zakat tidak hanya sebagai ritualitas keagamaan tetapi bisa menyentuh aspek kemanusiaan dengan memberdayakan potensinya untuk kesejahteraan publik semaksimal mungkin. Namun di sisi lain, riset dan pengembangan terkait zakat dan pengelolaannya masih sangat kurang, padahal hal ini sangat penting dilakukan.

Berdasarkan latar belakang yang dijelaskan di atas maka perumusan masalah dalam penelitian ini adalah: (1) Apa saja area kajian tentang zakat dan berapa persentasenya?; (2) Secara pendekatan metodologi penelitian, bagaimana komposisi riset terkait zakat secara umum? dan (3) Bagaimana persentase jumlah publikasi, tipe riset, pendekatan penelitian, subjek bahasan hingga area studi tentang zakat selama 5 tahun terakhir?

Fokus Kajian

Kajian dalam penelitian ini memfokuskan pada eksplorasi terhadap 100 penelitian *up to date* terkait zakat yang telah terpublikasi dalam jurnal ilmiah. Ada beberapa isu yang hendak diketahui jawabannya, yaitu berapa persentase riset terkait zakat selama 5 tahun terakhir, bagaimana jenis/tipe penelitian zakat dan komposisinya, bagaimana pendekatan penelitian tentang zakat dikaitkan dengan penggunaan metode penelitian baik kuantitatif, kualitatif maupun *mixed*.

Beberapa riset yang menjadikan Malaysia sebagai objek studi dilakukan oleh Hanapi (2015), Johari (2015) dan Said (2014) dan beberapa riset yang lainnya. Sementara itu riset yang lain menjadikan Indonesia sebagai objek kajian seperti yang dilakukan oleh Huda (2014) dan Rusli (2013). Negara lain juga menjadi area studi dalam penelitian zakat yang penulis telaah.

Selain yang tersebut di atas, fokus kajian juga mencoba menelaah lebih dalam terkait apa saja metode penelitian kuantitatif yang dipakai dan apa yang dominan dipakai. Bagaimana pula subjek pembahasan tentang zakat dan komposisinya. Tidak kalah penting, negara mana saja yang menjadi area studi dan area publikasi tentang riset zakat di seluruh dunia.

Penelitian ini menggunakan analisis statistika deskriptif berdasarkan 100 publikasi jurnal terkait zakat, baik nasional maupun internasional. Seluruh sampel publikasi jurnal yang telah terpublikasi 5 tahun terakhir mulai tahun 2011 hingga 2015. Studi hanya memfokuskan secara spesifik terhadap tulisan jurnal bertema zakat.

Selanjutnya, setelah dilakukan *review* dan analisis, penelitian terkait zakat ini dibagi ke dalam 5 (lima) kategori utama yaitu (1) Manajemen zakat, (2) Distribusi dana zakat, (3) Zakat dan kemiskinan, (4) Institusional zakat, dan (5) Pengumpulan (koleksi) dana zakat. Termasuk ke dalam term institusional adalah kelembagaan, payung hukum dan regulasi tentang zakat. Pengklasifikasian ini dibuat berdasarkan penelaahan isi, abstraksi dan keseluruhan penelitian secara umum, meskipun tidak menutup kemungkinan terjadinya irisan-irisan kategori dan klasifikasi.

Jumlah Publikasi Setiap Tahun

Pada bagian ini menjelaskan jumlah publikasi jurnal dari tahun 2011 hingga 2015. Terdapat 100 jurnal yang terpublikasi baik jurnal nasional maupun internasional yang berhubungan dengan zakat dari observasi 5 tahun terakhir selama tahun 2011 hingga 2015. Tabel 1 menjelaskan distribusi jurnal per tahun yang menunjukkan jumlah jurnal terpublikasi bervariasi dari tahun 2011 hingga 2015 dengan range 11 hingga 28 jurnal dan publikasi jurnal terbanyak yaitu pada tahun 2014. Sedangkan publikasi jurnal yang lebih sedikit dibandingkan tahun lainnya yaitu pada tahun 2011.

Tahun Publikasi	Jumlah Artikel	Persentase
2011	11	11%
2012	21	21%
2013	18	18%
2014	28	28%
2015	22	22%
Total	100	1

Tabel 1. Jumlah Publikasi per Tahun

Jenis Penelitian dari Masing-Masing Publikasi

Tabel 2 menunjukkan jenis (tipe) penelitian yang digunakan untuk setiap publikasi jurnal yang diamati. Menurut Sekaran (2013), secara umum terdapat empat tipe penelitian yaitu analisis, deskriptif, empiris dan penelitian eksploratori. Dalam observasi ini hanya menggunakan tiga jenis tipe penelitian yaitu analisis, deskriptif dan empiris.

Penelitian analisis digunakan untuk mencoba menjawab persoalan mengapa hal tertentu atau bagaimana hal tersebut dapat terjadi. Jenis penelitian ini biasanya berhubungan dengan sebab akibat. Penelitian deskriptif mencoba untuk menentukan, menggambarkan atau mengidentifikasi hal tertentu. Penelitian deskriptif menggunakan deskripsi, klasifikasi, pengukuran dan perbandingan untuk menggambarkan suatu fenomena. Dan metode penelitian empiris yaitu metode penelitian yang menggunakan observasi studi lapangan (empiris) atau data yang terkumpul dari tanya jawab seperti dalam bentuk kuisioner.

Dari tabel 2 dapat diketahui bahwa jenis metodologi penelitian yang terbanyak digunakan dari jurnal terpublikasi baik jurnal nasional dan internasional terkait zakat selama tahun 2011 hingga 2015 yaitu metodologi penelitian deskriptif sejumlah 49 jurnal, kemudian diikuti oleh metodologi penelitian analisis sejumlah 39 jurnal dan terakhir yaitu jurnal yang menggunakan penelitian empiris sebanyak 12 jurnal.

Tabel 2. Jenis Penelitian dari Masing- Masing Publikasi

Year of	ł	Total		
Publication	Analytical Descriptive		Empirical	Iotal
2011	4	7	0	11
2012	4	14	3	21
2013	6	9	3	18
2014	14	12	2	28
2015	11	7	4	22
Total	39	49	12	100

Pendekatan Penelitian Masing- Masing Publikasi

Berdasarkan Punch (2013), ada 3 jenis pendekatan penelitian yaitu pendekatan kualitatif, pendekatan kuantitatif dan pendekatan metodologi campuran (*mixed method*). Tabel 3 menunjukkan metodologi penelitian yang digunakan untuk setiap jurnal terpublikasi dalam kurun waktu 5 tahun yaitu 2011 hingga 2015. Dalam observasi ini, pendekatan penelitian yang terbanyak digunakan adalah pendekatan kualitatif sejumlah 61 jurnal, kemudian pendekatan kuantitatif sejumlah 37 jurnal dan terakhir yaitu jurnal yang menggunakan pendekatan kombinasi (*mixed method*) sejumlah 2 jurnal.

Tabel 3. Pendekatan Penelitian Masing- Masing Publikasi

Year of	R	Total		
Publication	Qualitative Quantitative		Mixed	Total
2011	7	4	0	11
2012	17	4	0	21
2013	12	6	0	18
2014	14	13	1	28
2015	11	10	1	22
Total	61	37	2	100

Jenis Metodologi Kuantitatif

Tabel 4 menunjukkan jenis- jenis metodologi penelitian kuantitatif yang digunakan dalam 100 jurnal publikasi terpilih. Adapun dalam 100 jurnal zakat terdapat 25 jenis metodologi penelitian kuantitatif yang digunakan, yaitu metode *Multiple Regression Analysis* (5), *Structural Equation Modeling* (4), Panel Data (4), VECM (3), AHP (3), DEA (2), Faktor Analisis (2), *Rasch Measurement Model* (2), PLS (2, dan metode lainnya (1).

Tabel. 4. Jenis Metodologi Penelitian Kuantitatif

Quantitative Method	Number
Multiple Regression Analysis	5
Structural Equation Modeling	4
Panel Data	4
Vector Error Correction Model	3
AHP	3
Data Envelopment Analysis	2
Factor Analysis	2
Rasch Measurement Model	2
Partial Least Square	2
Partial Least Square path Modeling	1
Two Stage Data Envelopment Analysis	1
Linear Regression Model	1
Wilxocon Analysis	1
Tobit Regression	1
Malmquist Productivity Index	1
ANP	1
Polynomial Model	1
Exponential Model	1
Discrete Malthusian Growth Model	1
Moderated Regression Analysis	1
C4.5 Decision Tree algorithm	1
CAST Method	1
Quota Sampling	1
Logistic Regression	1

Subjek Jurnal Zakat

Tabel 5 menunjukkan subjek pembahasan masingmasing jurnal terkait zakat berdasarkan publikasi jurnal zakat selama tahun 2011 hingga 2015. Adapun dalam observasi ini berdasarkan lima subjek yaitu terkait manajemen zakat, distribusi zakat, pengentasan kemiskinan dan pengumpulan zakat dan institusi zakat. Dari publikasi jurnal 2011-2015 terpilih dalam pengamatan, subjek pembahasan terkait jurnal zakat terbanyak yaitu mengenai institusi zakat sejumlah 26 jurnal dari 100 sampel jurnal, kemudian diikuti oleh subjek pembahasan mengenai distribusi zakat sejumlah 22 jurnal, manajemen zakat sejumlah 21 jurnal, pengentasan kemiskinan sejumlah 20 jurnal dan terakhir terkait pengumpulan zakat sejumlah 11 jurnal.

		,		5		
Subject of		T . 1				
Article	2011	2012	2013	2014	2015	- Total
Management	2	4	6	6	3	21
Distribution	2	7	3	4	6	22

4

3

2

18

3

4

11

28

5

3

5

22

20

11

26

100

5

0

5

21

3

1

3

11

Poverty

Collection

Institution

Total

Tabel 5.Subjek Pembahasan Jurnal Zakat

Area Studi dan Publikasi Berdasarkan Negara

Tabel 6 menunjukkan daftar terbanyak publikasi berdasarkan letak geografis (negara). Tabel ini dibagi menjadi 2 bagian yaitu lokasi studi 100 jurnal publikasi terpilih dan lokasi publikasi 100 jurnal tersebut. Pada bagian pertama, mengenai lokasi studi jurnal. Dari tabel 6 dapat diketahui bahwa Indonesia menjadi area studi terbanyak terkait penelitian zakat yaitu sejumlah (35 jurnal), diikuti oleh Negara Malaysia (34 jurnal), Nigeria (3 jurnal), Pakistan (3 jurnal) dan negaranegara lainnya (1 jurnal).

Senada dengan area studi, dari segi area publikasi jurnal, Indonesia menjadi negara yang terbanyak publikasi terkait penelitian zakat sejumlah (33 jurnal), USA (13 jurnal), Malaysia (9 jurnal), Timur Tengah (6 jurnal), Australia (3 jurnal), Pakistan (4 jurnal), Bangladesh (4 jurnal), Kanada (4 jurnal), UK (4 jurnal), India (3 jurnal), Australia (3 jurnal), Turki (2 jurnal) dan negara lainnya (1 jurnal).

Adapun area publikasi dari 100 jurnal zakat terpilih bervariasi yaitu terdapat 70 jenis jurnal. Dalam penelitian zakat ini, International Journal of Business and Social Science menjadi jurnal terbanyak dalam mempublikasikan jurnal terkait zakat yaitu sejumlah 8 jurnal, kemudian diikuti oleh Middle-East Journal of Scientific Research (5 jurnal), Journal of Islamic Economics, Banking and Finance (4 jurnal), Tazkia Islamic Finance and Business Review (4 jurnal), Jurnal BIMAS Islam (4 jurnal), International Journal of Economics, Management & Accounting (3 jurnal), Jurnal Ekonomi dan Keuangan (3 jurnal), Economic: Jurnal Ekonomi dan Hukum Islam (3 jurnal), Journal of Economic Cooperation and Development (2) jurnal), Australian Journal of Basic and Applied Sciences (2 jurnal), Al- Iqtishad (2 jurnal), International Journal of Management and Commerce Innovations (2 jurnal) dan jurnal lainnya (1 jurnal).

Tabel 6.Area Studi dan Publikasi Berdasarkan Negara

Country	Studied Area	Publication Area
Indonesia	35	33
Malaysia	34	9
Nigeria	3	0
Pakistan	3	4
Bangladesh	1	4
India	0	3
Turki	0	2
Timur Tengah	0	6
USA	0	13
UK	0	4
Kanada	0	4
Australia	0	3
Lainnya	6	15
TOTAL	82	100

Temuan Penelitian

Analisis 100 publikasi jurnal terkait studi zakat dari tahun 2011 hingga 2015 adalah (1) Terdapat keragaman pembahasan jurnal terkait zakat yang terpublikasi telah didiskusikan. Jumlah publikasi terbanyak yaitu pada tahun 2014 sebanyak 28 jurnal dari 100 sampel jurnal terpublikasi. (2) Umumnya penggunaan metode penelitian deskriptif untuk menjawab fenomena zakat di suatu negara tertentu masih mendominasi metode penelitiannya yaitu sejumlah (49 jurnal) dari 100 sampel jurnal. Sedangkan metode penelitian analisis (39 jurnal) dan metode penelitian empiris (12 jurnal). (3) Secara umum dari 100 publikasi jurnal menggunakan metode pendekatan kualitatif dalam membahas zakat sebanyak (61 jurnal), pendekatan kuantitatif (37 jurnal), pendekatan mixed method (2 jurnal). (4) Subjek pembahasan 100 publikasi jurnal zakat tersebut lebih banyak terkait institusi zakat itu sendiri, kemudian disusul terkait distribusi, manajemen, pengentasan kemiskinan dan pengumpulan dana zakat. (5) Negara Indonesia menjadi area studi zakat terbanyak dari 100 sampel publikasi jurnal tersebut dibandingkan negara lainnya. Disamping itu, jurnal- jurnal Indonesia menjadi terbanyak dalam publikasi jurnal tentang zakat.

Hasil dari analisis di atas dapat diketahui bahwa isu zakat menjadi pembahasan yang intensif oleh pakarpakar Muslim dari tahun ke tahun. Hal ini dibuktikan dengan dominasi publikasi jurnal 2 tahun terakhir yaitu 2014 dan 2015 yang lebih banyak dibandingkan dengan tahun sebelumnya terkait isu zakat. Selain itu, isu- isu tentang zakat lebih banyak dikaji atau dibahas dengan menggunakan metode deskriptif dan kualitatif. Subjek pembahasan yang terbanyak didiskusikan mengenai institusi zakat itu sendiri.

Penutup

Penelitian tentang zakat memiliki peran penting untuk umat Islam dalam menyadari kewajiban menunaikan zakat sebagai salah satu rukun Islam. Selain itu dapat meningkatkan kesadaran dari optimalisasi dana zakat dalam mengentaskan kemiskinan dan menyejahterakan masyarakat. Pembahasan penelitian zakat masih didominasi oleh pembahasan institusi zakat dari tahun 2011 hingga 2015. Sebab mayoritas penulis ratarata mengangkat isu terkait kelembagaan zakat yang berlandaskan payung hukum yang kuat sehingga dengan hal tersebut diduga dapat meningkatkan kesadaran dan kepercayaan masyarakat untuk membayar zakat yang kemudian akan dikelola serta disalurkan kepada pihak- pihak yang berhak menerimanya (ashnâf). Selain itu, perbandingan metode penelitian kuantitatif masih lebih sedikit dibandingkan dengan pendekatan kualitatif. Hal ini menjadi potensi untuk meningkatkan penelitian tentang zakat dengan menggunakan metode kuantitatif.[]

Pustaka Acuan

2011

- Abdullah, Muhammad and Suhaib, Abdul Quddus. (2011). "The Impact of Zakat on Social Life of Muslim Society". *Pakistan Journal of Islamic Research* Vol 8.
- Abioye, Mustafa Murtala Oladimeji, Mohamad, Muslim Har Sani and Adnan, Muhammad Akhyar. (2011). "Antecedents of Zakat Payers Trust, the Case of Nigeria". *International Journal of Economics, Management & Accounting*, Supplementary Issue 19: 133-164.
- Adebayo, Dr. R. Ibrahim. (2011). "Zakat and Poverty Alleviation, a Lesson for the Fiscal Policy Makers in Nigeria". *Journal of Islamic Economics, Banking and Finance*, Vol. 7 No. 4.
- Azharsyah. (2011). "Maksimalisasi Zakat sebagai Salah Satu Komponen Fiskal dalam Sistem Ekonomi Islam". *Jurnal Syariah* Vol. 3 No. 1.
- Bakar, Mahyuddin Haji Abu and Ghani, Prof. Dr. Abdullah Haji Abd. (2011). "Towards Achieving the Quality of Life in the Management of Zakat Distribution to the Rifhtful Recipients". *International Journal of Business and Social Science* Vol. 2 No. 4.

- Din, Hafiz Salah Ud and Atta Malik Amer. (2011). "The Role of Zakat in Establishment of a Model Society". *Gomal University Journal of Research* 27(1): 149-158.
- Jumaizi and Wijaya, Zainal A. (2011). "Good Governance BAZIS dan Dampaknya thd Keputusan dan Loyalitas Muzaki". *Majalah Ilmiah Informatika* Vol. 2 No. 3.
- Mohsin, Magda Ismail A., Lahsasna, Ahcene, Ismail, Ezamshah. (2011). "Zakah from Salary and EPF, Issues and Challenges". *International Journal of Business and Social Science* Vol. 2 No. 1.
- Shariff, Anita Md, Jusoh, Wan Noor Hazlina Wan, Mansor, Norudin and Jusoff, Kamaruzaman. (2011).
 "A Robust Zakah System, Towards a Progressive Socio-Economic Development in Malaysia". *Middle-East Journal of Scientific Research* 7 (4): 550-554 ISSN 1990-9233.
- Wiliasih, Ranti, Usman, Hardius, Marzuki, Khafid, Mardoni, and Yosi, Marcelo. (2011). "Relationship between Quality of Life and Reguler Zakah Exercise". *International Journal of Business and Social Science* Vol. 2 No. 16.
- Yusoff, Mohammed B. (2011). "Zakat Expenditure, School Enrollment and Economic Growth in Malaysia". *International Journal of Business and Social Science* Vol. 2 No. 6.

- Abdullah, Luqman Haji, Ahmad, Wan Marhaini Wan, Rahman, Noor Naemah Abdul, Ali, Abdul Karim, Nor, Mohd Roslan Mohd, Khalil, Shahidra Abdul and Al-Nahari, Ameen Ahmed Abdullah Qasen. (2012). "Juristic Discourse on the Delay in Payment and Distribution of Zakat". *Middle-East Journal* of Scientific Research 12 (2): 176-181, ISSN 1990-9233.
- Abdullah, Naziruddin, Yusop, Mohd Mahyudi Mohd, and Hj. Awang, Che Omar. (2012). "A Technical Note on the Derivation of Zakat Effectiveness Index (ZEIN)". *International Journal of Economics, Management and Accounting* Vol. 20, No.1: 75-86.
- Ahmad, Wan Marhaini Wan and Mohamad, Shamsiah. (2012). "Classical Jurists View on the Allocation of Zakat, Is Zakat Investment Allowed". *Middle-East Journal of Scientific Research* 12 (2): 195-203, ISSN 1990-9233.
- Awang, Rohila @Norhamizah and Mokhtar, Mohd Zulkifli. (2012). "Comparative Analysis of

Current Values and Historical Cost in Business Zakat Assessment, an Evidence from Malaysia". *International Journal of Business and Social Science* Vol. 3 No. 7.

- Febianto, Irawan and Ashany, Arimbi Mardilla. (2012).
 "The Impact of Qardhul Hasan Financing using Zakah Funds on Economic Empowerment, Case Study DD West Java Indonesia". *Asian Business Review*, Volume 1, Issue 1, ISSN 2304-2613.
- Halim, Hazlina Abdul, Said, Jamaliah, Yusuf, Sharifah, Norzehan Syed. (2012). "Individual Characteristics of the Successful Asnaf Entrepreneurs, Opportunities and Solutions for Zakat Organisation in Malaysia". *International Business and Management* Vol. 4, No. 2, 2012, pp. 41-49 ISSN 1923-8428.
- Hendri, Davy. (2012). "ZIS Institutions and Inclusive Asset-building Policy Agenda". Tazkia Islamic Finance and Business Review Volume 7.1.
- Hummida, Dayang Binti Abang Abdul Rahman and Mohammed, Mustafa Omar. (2012). "The Role of Baitulmal towards the Education of Poor Muslims in Sarawak". *Journal of Contemporary Issues and Thought* Vol. 2.
- Ibrahim, Abdullah, Abdullah, Abdul Aziz, Rizuan, Mohd Bin Abdul Kadir and Wafa, Syed Mohd Ghazali Syed AdwamWafa. (2012). "Assessing Financial Reporting on Adopting Business Zakat Guidelines on Malaysian Government Linked Companies". *International Journal of Business and Social Science* Vol. 3 No. 24.
- Isnawati and Wirawan, Bintang. (2012). "Peranan Lazdai dalam Pengelolaan Dana Zakat untuk Bidang Pendidikan (Studi pada Lembaga Amil Zakat Amal Insani (LAZDAI) Lampung)". *Jurnal Sociologie*, Vol. 1, No. 4: 308-315.
- Maerani, Ira Alia S.H. M.H. (2012). "Aplikasi Nilainilai Islam dalam Perda tentang Pengelolaan Zakat dan Problematikanya pada Era Otda di Kota Semarang". Jurnal Hukum, Vol XXVIII, No. 2.
- Mahalli, Amalia Kasyful. (2012). "Potensi dan Peranan Zakat dalam Mengentaskan Kemiskinan di Kota Medan". *Jurnal Ekonomi dan Keuangan*, Vol. 1, No.1.
- Nadzri, Farah Aida Ahmad, AbdRahman, Rashidah and Omar, Normah. (2012). "Zakat and Poverty Alleviation, Roles of Zakat Institutions in Malaysia". *International Journal of Arts and Commerce* Vol. 1 No. 7.
- Noor, Abd. Halim Mohd, Rasool, Mohamed Saladin

Abdul, Rahman, Rashidah Abdul, Yusof, Rozman Md and Ali, Siti Mariam. (2012). "Assessing Performance of Nonprofit Organization, A Framework for Zakat Institutions". *British Journal* of Economics, Finance and Management Sciences Vol. 5 (1).

- Rahman, Azman Ab. (2012). "The Role of Zakat in Islamic Banking Institutions in Developing the Economy of the Poor and Needy in Malaysia". *Tazkia Islamic Finance and Business Review* Volume 7.2.
- Rahman, Azman Ab, Alias, Mohammad Haji, Omar, Syed Mohd Najib Syed. (2012). "Zakat Institution in Malaysia, Problems and Issues". *GJAT Journal* Vol. 2 No. 1 ISSN: 2232-0474.
- Sarea, Dr. Adel. (2012). "Zakat as a Benchmark to Evaluate Economic Growth, An Alternative Approach". *International Journal of Business and Social Science* Vol. 3 No. 18.
- Siswantoro, Dodik. (2012). "The Need of Standardization of Individual Zakat Calculation in Indonesia". *Tazkia Islamic Finance and Business Review* Volume 7.1.
- Tarar, Ayesha and Riaz, Madiha. (2012). "Impact of Zakat on Economy, Structure and Implementation in Pakistan". *Journal of Economics and Sustainable Development* ISSN 2222-1700 (Paper) ISSN 2222-2855 (Online) 2855 (Online) Vol. 3, No. 10.
- Wahab, Norazlina Abd and Rahman, Abdul Rahim Abdul. (2012). "Efficiency of Zakat Institutions in Malaysia, an Application of DEA". *Journal of Economic Cooperation and Development*, 33, 1, 95-112.
- Yusoff, Mohammed B. and Densumite, Sorfina. (2012). "Zakat Distribution and Growth in the Federal Territory of Malaysia". *Journal of Economics* and Behavioral Studies Vol. 4, No. 8, pp. 449-456, ISSN: 2220-6140.

- Ali, Ahmad Fahme Mohd, Noor, Zaleha binti Mohd, Aziz, Muhammad Ridhwan Ab, Ibrahim, Mohd Faisol, Johari, Fuadah. (2013). "Impact of Zakat Distribution on Poor and Need Recipients, an Analysis in Kelantan Malaysia". *Australian Journal* of Basic and Applied Sciences, 7(13) Pages: 177-182.
- Amuda, Yusuff Jelili. (2013). "Empowerment of Nigerian Muslim Households through Waqf Zakat Sadaqat and Public Funding". *International Journal* of Trade, Economics and Finance, Vol. 4, No. 6.

- Firmansyah, Irman and Aam S. Rusydiana. (2013). "Pengaruh Profitabilitas thd Pengeluaran Zakat pada BUS di Indonesia dengan Ukuran Perusahaan sebagai Variabel Moderasi". *Jurnal Liquidity* Vol. 2 No. 2 Hlm. 110- 116.
- Hermawan, Wawan. (2013). "Politik Hukum Zakat di Indonesia". *Jurnal Pendidikan Agama Islam – Ta'lim* Vol. 11 No. 2.
- Hossain, Md. Ismail. (2013). "Analysis on Poverty Alleviation by Mosque Based Zakat Administration in Bangladesh, an Empirical Study". *Journal of Poverty, Investment and Development* Vol.1.
- Htay, Sheila Nu Nu, Salman, Syed Ahmed, Ilyas, Soe Myint @ Haji. (2013). "Integrating Zakat Waqf and Sadaqah, Myint Myat Phu Zin Clinic Model in Myanmar". *Tazkia Islamic Finance and Business Review* Volume 8.2.
- Huda, Nurul, Anggraini, Desti, Ali, Khalifah Muhamad, Rini, Nova, Mardoni, Yosi. (2013). "Komparasi AHP dan ANP dalam Penentuan Solusi Pengelolaan Zakat, (Kasus DKI dan SulSel)". *Ekuitas: Jurnal Ekonomi dan Keuangan* Volume 17, Nomor 3: 357 – 375 ISSN 1411-0393.
- Istutik. (2013). "Analisis Implementasi Akuntansi Zakat dan Infak-Sedekah (PSAK 109) pada LAZ di Kota Malang". *Jurnal Akuntansi Aktual*, Vol. 2, No. 1 hlm. 19–24.
- Johari Fuadah, Aziz, Muhammad Ridhwan Ab, Ibrahim, Mohd Faisol and Ali, Ahmad Fahme Mohd. (2013). "The Roles of Islamic Social Welfare Assistant (Zakat) for the Economic Development of New Convert". *Middle-East Journal of Scientific Research* 18 (3): 330-339, ISSN 1990-9233.
- Kholis, Nur, Sobaya, Soya, Andriansyah, Yuli, dan Iqbal, Muhammad. (2013). "Potret Filantropi Islam di Propinsi Daerah Istimewa Yogyakarta". *La Riba Jurnal Ekonomi Islam* Vol. VII, No. 1.
- Mohsin, Magda Ismail A. (2013). "Potential of Zakat in Eliminating Riba and Eradicating Poverty in Muslim Countries {Case Study: Salary Deduction Scheme of Malaysia". *EJBM-Special Issue:Islamic Management and Business* Vol.5 No.11: ISSN 2222-1719.
- Nadhari, Abdullah Khatib. (2013). "Pengelolaan Zakat di Dunia Muslim". Economic: *Jurnal Ekonomi dan Hukum Islam*, Vol. 3, No. 2 ISSN: 2088-6365.
- Punch, Keith F. 2013. Introduction to Social Research: Quantitative and Qualitative Approaches. USA: Sage

- Razak, Mohamad Idham Md, Omar, Assoc. Prof. Dr. Roaimah, Ismail, Maymunah, Hamzah, Afzan Sahilla Amir, Hashim, Assoc. Prof. Dr. Mohd Adnan. (2013). "Overview of Zakat Collection in Malaysia, Regional Analysis". *American International Journal of Contemporary Research* Vol. 3 No. 8.
- Rusli, Hamzah, Abubakar, Syahnur, Sofyan. (2013). "Analisis Dampak Pemberian Modal Zakat Produktif thd Pengentasan Kemiskinan di Aceh Utara". *Jurnal Ilmu Ekonomi* Vol. 1 No. 1 pp. 56- 63 ISSN 2302-0172.
- Sarea, Dr. Adel Mohammed. (2013). "Accounting Treatment of Zakah, Additional Evidence from AAOIFI". *Journal of Islamic Banking and Finance*, Vol. 1 No. 1.
- Sari, Mutiara Dwi, Bahari, Zakaria, Hamat, Zahri. (2013). "Review on Indonesian Zakah Management and Obstacles". *Social Sciences* 2(2): pp. 76-89.
- Sekaran, Uma. 2013. Research Methods for Business: A Skill-Building Approach, 6th Edition. USA: Wiley.
- Suprayitno, Eko, Kader, Radiah Abdul, Harun, Azhar. (2013). "The Impact of Zakat on Aggregate Consumption in Malaysia". *Journal of Islamic Economics, Banking and Finance*, Vol. 9 No. 1.
- Wahab, Norazlina Abd and Rahman, Abdul Rahim Abdul. (2013). "Determinants of Efficiency of Zakat Institutions in Malaysia, A Non-parametric Approach". *Asian Journal of Business and Accounting* 6(2), 2013 ISSN 1985–4064.

- Ahmad, Ismail HJ and Ma'in Masturah. (2014). "The Efficiency of Zakat Collection and Distribution, Evidence from Two Stages Analysis". *Journal of Economic Cooperation and Development*, 35, 3 pp 133-170.
- Aji, Hastomo. (2014). "Intensi Muzakki Membayar Zakat Pendekatan Teori Planned Behaviour Modifikasi (Studi Terhadap Pegawai Kementerian Agama Pusat)". *Jurnal Bimas Islam* Vol.7. No.III.
- Ali, Ahmad Fahme Mohd, and Aziz, Muhammad Ridhwan Ab. (2014). "Zakat Poverty Line Index and Gender Poverty in Malaysia: Some Issues and Practices". *International Journal of Business and Social Science* Vol. 5, No. 10.
- Ali, Ahmad Fahme Mohd, Aziz, Muhammad Ridhwan Ab, and Ibrahim, Mohd Faisol. (2014). "Zakat Poverty Line Index and Urban-Rural Poverty in

Malaysia, a Critical Analysis". *Pensee Journal* Vol. 76, No. 7.

- Ananda, David Bayu and Wibisono, Ari. (2014). "C4.5 Decision Tree Implementation in Sistem Informasi Zakat (SIZAKAT) to Automatically Determining the Amount of Zakat Received by Mustahik". *Journal of Information Systems*, Volume 10, Issue 1.
- Gufroni, Acep Irham, Wisandani, Iwan and Sukmawati, Heni. (2014). "Sistem Informasi UPZ Terintegrasi Berbasis Web, Studi Kasus Baznas Kota Tasikmalaya". *Jurnal Sistem Komputer* Vol. 4 No. 2, ISSN: 2087-4685.
- Gurning, Herfita Rizki Hasanah and Ritonga, Haroni Doli Hamoraon. (2014). "Analisis Tingkat Kesadaran Masyarakat Medan Baru dalam Membayar Zakat". *Jurnal Ekonomi da Keuangan* Vol.3 No.7.
- Htay, Sheila Nu Nu and Salman, Syed Ahmed.(2014).
 "Proposed Best Practices of Financial Information Disclosure for Zakat Institution, a Case Study of Malaysia". World Applied Sciences Journal 30 (Innovation Challenges in Multidiciplinary Research & Practice): 288-294, 2014, ISSN 1818-4952.
- Huda, Nurul, Anggraini, Desti, Ali, Khalifah Muhamad, Mardoni, Yosi, and Rini, Nova. (2014).
 "Prioritas Solusi Permasalahan Pengelolaan Zakat dengan Metode AHP, Studi di Banten dan KalSel". *Al-Iqtishad*: Vol. VI No. 2.
- Huda, Nurul, Anggraini, Desti, Ali, Khalifah Muhamad, Rini, Nova, and Mardoni, Yosi. (2014). "Solutions to Indonesian Zakah Problems, AHP Approach". *Journal of Islamic Economics, Banking and Finance*, Vol. 10 No. 3.
- Ibrahim, Ahmad Asad, Elatrash, Radwan Jamal, and Farooq, Mohammad Omar. (2014). "Hoarding versus Circulation of Wealth from the Perspective of Maqasid Shariah". *International Journal of Islamic and Middle Eastern Finance and Management* Vol. 7 No. 1.
- Johari, Fuadah, Ali, Ahmad Fahme Mohd, Aziz, Muhammad Ridhwan Ab and Ahmad, Nursilah. (2014). "The Importance of Zakat Distribution and Urban-Rural Poverty Incidence among Muallaf (New Convert)". *Asian Social Science*; Vol. 10, No. 21, ISSN 1911-2017.
- Johari, Fuadah, Aziz, Muhammad Ridhwan Ab, Ali, Ahmad Fahme Mohd. (2014). "The Role of zakat in reducing poverty and income inequality among new convert in Selangor Malaysia". *Journal Research in Islamic Studies* Vol. 1 No. 3, pp. 43- 56.

- Johari, Fuadah, Aziz, Muhammad Ridhwan Ab., Ibrahim, Mohd Faisol, and Ali, Ahmad Fahme Mohd. (2014). "Zakat Distribution and Programme for Sustaining Muallaf Belief and Thought". *Jurnal Teknologi (Social Sciences)* 66:1, 35–43.
- Khamis, Mohd Rahim, Mohd, Rohani, Salleh, Arifin Md, and Nawi, Abdol Samad. (2014). "Do Religious Practices Influence Compliance Behaviour of Business Zakat among SMEs". *Journal of Emerging Economies and Islamic Research* Vol. 2, No. 2.
- Muhtada, D. (2014). "Islamic Philanthropy and the Third Sector, the Portrait of Zakat Organizations in Indonesia". *ISLAMIKA INDONESIANA*, Vol. 1, Issue 1: 122-142.
- Munif, Ahmad. (2014). "Zakat Madu Pada Masa Khalifah Umar Ibn Khattab RA. (Analisis Fiqhiyah dan Kebijakan Publik)". *Jurnal Bimas Islam* Vol.7. No.III.
- Mustofa. (2014). "Sistem Ekonomi Keuangan Publik Berbasis Zakat". *Jurnal Madani*, Vol 4. No 1, ISSN: 2087-8761.
- Noor, Abd Halim Mohd and Khairi, Nur Zehan. (2014).
 "What Determine Professionalism, a Study on Zakat Institutions Integration Efforts into the Mainstream Economy". *Middle-East Journal of Scientific Research* 22 (7): 983-993, ISSN 1990-9233.
- Omar, W. A. Wan, Hussin, Fauzi and G. H. Asan Ali. (2014). "The Trend Analysis of Islamization in Malaysia using Islamization Index as Indicator". *Asian Economic and Financial Review*, 4(10): 1298-1313.
- Rosmawati, Rosi. (2014). "Pengembangan Potensi Dana Zakat Produktif melalui LAZ untuk Meningkatkan Kesejahteraan Masyarakat". *Padjadjaran Jurnal Ilmu Hukum* Vol. 1 No. 1.
- Said, Jamaliah, Ahmad, Mahfuzah and Yusuf, Sharifah Norzehan Syed. (2014). "Effectiveness of Capital Assistance Program, Evidence from Malaysia". *Research Journal of Applied Sciences, Engineering and Technology* 8(4): 488-495, ISSN: 2040-7459.
- Said, Hasani Ahmad. (2014). "Tafsir Ahkam: Zakat Sebagai Solusi Perekonomian Umat di Indonesia". *Jurnal Bimas Islam* Vol.7. No.III.
- Salehi, Mahdi and Poour, Arash Ariyan. (2014). "A Study on the Influences of Islamic Values on Iranian Accounting Practice and Development". *Journal of Islamic Economics, Banking and Finance*, Vol. 10 No. 2.
- Salleh, Muhammad Syukri. (2014). "Organizational

Aam Slamet Rusydiana & Salman Al-Farisi: Studi Literatur Tentang Riset Zakat 289

and Definitional Reconfiguration of Zakat Management". *International Journal of Education and Research* Vol. 2 No. 5.

- Siradj, Mustolih. (2014). "Long Road of Sharia Zakat Legislation in Indonesia: A study of Law No. 23 of 2011 about Zakat Management". *Jurnal Bimas Islam* Vol.7. No.III.
- Yona, Rika Delfa. (2014). "Tarik Ulur Peran Pemerintah Dalam Pengelolaan Zakat". *Economic: Jurnal Ekonomi dan Hukum Islam*, Vol. 4, No. 2, ISSN: 2088-6365.
- Yusoff, Mohammed B. (2014). "Zakat distribution, education, and real income per capita in Malaysia". *Review of Strategic and International Studies* Vol. VI No. 3, ISSN: 2326-8085.

2015

- Almatar, Dr. Fatima. (2015). "Zakat vs Taxation the Issue of Social Justice and Redistribution of Wealth". *European Journal of Business, Economics,* and Accountancy Vol. 3 No. 3 ISSN 2056- 6018.
- Fuadi, Thayeb, Dr. H. M. Hasballah, Suhaidi, Dr, and Kamello, Dr. Tan. (2015). "Conflict Setting between Zakat as a Deduction of Income Tax (Taxes Credit) and Zakat as Deduction of Taxable Income (Taxes Deductable), A Research in Aceh Indonesia". *IOSR Journal of Economics and Finance (IOSR-JEF)* e-ISSN: 2321-5933, p-ISSN: 2321-5925.Volume 6, Issue 2. Ver. I, PP 40-49.
- Hanapi, Mohd Shukri. (2015). "Paddy Zakat Accounting and Its Relationship with the Social Wellbeing of Farmers, A Case Study in Perlis". *Sains Humanika* 4:2, 47–52.
- Hasibuan, Khoiruddin. (2015). "Zakat and Its Effect to Community Empowerment, Case Studies DD Jogjakarta and Its Network". *Jurnal Al- Tbrah* Vol. 11 No. 1.
- Hoque, Nazamul, Khan, Mohammad Aktaruzzaman and Mohammad, Kazi Deen. (2015). "Poverty Alleviation by Zakah in a Transitional Economy, A Small Business Entrepreneurial Framework". *Journal* of Global Entrepreneurship Research (5:7).
- Huda, Nurul and Andriati, Rizky. (2015). "The Influences of Productive Zakah Mentoring to the Saving Behavior and the Prosperity of Poor Housewife". *Al-Iqtishad*: Vol. VII No. 2.
- Hussain, Akhtar and Abdullah. (2015). "Importance of Zakat in the Establishment of the Society". GJRA
 Global Journal for Research Analysis Volume-4,

Issue-4, ISSN No 2277 - 8160.

- Ibrahim, Sheriff Muhammad. (2015). "Exploring the Motivational Factors for Corporate Zakat Payments". *International Journal of Management and Commerce Innovations* Vol. 3, Issue 1, pp: (429-436), ISSN 2348-7585.
- Ibrahim, Sheriff Muhammad. (2015). "The Role of Zakat in Establishing Social Welfare and Economic Sustainability". *International Journal of Management* and Commerce Innovations, ISSN 2348-7585 (Online) Vol. 3, Issue 1, pp: (437-441).
- Iqbal, Nadeem and Akhtar, Muhammad Ramzan. (2015). "Statistical Evaluation, Measuring and Managing Poverty in Rural Pakistan". *Pakistan Journal of Statistics* Vol. 31(6), 709-716.
- Johari, Fuadah, Ali, Ahmad Fahme Mohd and Aziz, Muhammad Ridhwan AB. (2015). "The Role of Zakat Distribution among Muallaf in Reducing Poverty in Selangor Malaysia". *Journal of Economic Policy Researches* Vol. 2, No. 1 (39-56).
- Kahf, Monzer and Yafai, Samira Al. (2015). "Social Security and Zakah in Theory and Practice". *International Journal of Economics, Management and Accounting* 23, no. 2: 189-215.
- Kantarci, Hasan Bulent. (2015). "The-Importance of Zakat in Struggle against Circle of Poverty and Income Redistribution". *International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering* Vol: 9, No: 1.
- Kasri, Rahmatina and Ahmed, Habib. (2015). "Assessing Socio-Economic Development based on MS Principles, Normative Framework, Methods and Implementation in Indonesia". *Islamic Economic Studies* Vol. 23, No. 1, (73-100).
- Maghfiroh, Siti. (2015). "Model Manajemen Strategis Pemberdayaan Ekonomi Umat Melalui Zakat Infak Sedekah, Studi Kasus pada LAZIS Qaryah Thayyibah Purwokerto". *Economic: Jurnal Ekonomi dan Hukum Islam*, Vol.5, No. 2 ISSN: 2088-6365.
- Mastura, Farah Binti Noor Azman and Zainol Bin Bidin. (2015). "Determinants of Attitude toward Zakat on Saving". *Australian Journal of Basic and Applied Sciences*, 9(31), Pages: 7-13 ISSN: 1991-8178.
- Mastura, Farah Noor Azman and Zainol Bidin. (2015). "Factors Influencing Zakat Compliance Behavior on Saving". *International Journal of Business and Social Research* Volume 05, Issue 01.
- Nurhayati, Sri and Siswantoro, Dodik. (2015). "Factors

290 Ahkam: Vol. XVI, No. 2, Juli 2016

on Zakat Preference as a Tax Deduction in Aceh Indonesia". *International Journal of Nusantara Islam*, Vol.03 No.01; (1–20).

- Othman, Azhana, Noor, Abdul Halim Mohd, Salleh, Arifin Md. (2015). "An Analysis Relationship between Social Exclusion and Non-Recipients Asnaf of Zakat Fund (NRAZF)". *Australian Journal of Sustainable Business and Society* Volume 1 No. 2.
- Sarntisart, Saran. (2015). "The Economic Implications of Religious Giving". *I J A B E R*, Vol. 13, No. 2, (2015): 687-716.
- Syafei, Zakaria. (2015). "Public Trust of Zakat Management in the Office of Religious Affairs Serang Banten Indonesia". *Journal of Management* and Sustainability; Vol. 5, No. 3, ISSN 1925-4725 E-ISSN 1925-4733.

Environmental Kuznets Curve for CO2 emission: A Literature Survey

Muhammad Shahbaz Energy and Sustainable Development Montpellier Business School, Montpellier, France Email: <u>muhdshahbaz77@gmail.com</u>

Avik Sinha Centre for Economics and Finance, Administrative Staff College of India, Hyderabad, India Email: <u>f11aviks@iimidr.ac.in</u>

Abstract

This paper provides a survey of the empirical literature on Environmental Kuznets Curve (EKC) estimation of carbon dioxide (CO₂) emissions over the period of 1991-2017. This survey categorizes the studies on the basis of single country and cross-country contexts. It has been hypothesized that the EKC is an inverted U-shaped association between economic growth and CO₂ emissions. For both single country and cross-country contexts, the results of EKC estimation for CO₂ emissions are inconclusive in nature. The reasons behind this discrepancy can be attributed to the choice of contexts, time period, explanatory variables, and methodological adaptation. The future studies in this context should not only consider new set of variables (e.g., corruption index, social indicators, political scenario, energy research and development expenditures, foreign capital inflows, happiness, population education structure, public investment towards alternate energy exploration, etc.), but also the dataset should be refined, so that the EKC estimation issues raised by Stern (2004) can be addressed.

Keywords: Environmental Kuznets Curve; Carbon Emissions; Economic Growth

1. Introduction

When an economy starts moving along the growth trajectory, then at the earliest stage of economic development, environment deteriorates rapidly due to ambient air pollution, deforestation, soil and water contamination, and several other factors. With rise in the level of income, when economy starts to develop, the pace of deterioration slows down, and at a particular level of income, environmental degradation starts to come down and environmental quality improves. This hypothesized association between economic growth and CO₂ emissions is termed inverted U-shaped. This phenomenon is also referred as Environmental Kuznets Curve (EKC) hypothesis in environmental economics literature, named after Simon Kuznets (1955), who described an inverted U-shaped association between economic growth and income inequality. Grossman and Krueger (1991) later found its resemblance with Kuznets' inverted U-curve relationship while establishing a relationship between economic growth and environmental degradation.

Following the findings of Grossman and Krueger (1991), a number of researchers started estimating EKC in diverse contexts and using a wide range of methodologies. These studies were conducted on various ambient air pollutants, water and soil contaminations, and ecological footprints. The empirical results obtained from these studies differed largely in terms of model specifications, choice of explanatory variables, shapes of EKC, and turnaround points. Therefore, for any given context and any particular pollutant, there is no consensus among the researchers regarding the shape and nature of EKC. Various earlier studies on the EKC estimation considered income and population as the explanatory variables (Panayotou, 1993), and with graduation of time, several context-specific explanatory variables, e.g. energy consumption, petroleum consumption, trade, corruption index, political collaboration, literacy rate, mortality rate, and several others have been considered within the EKC framework. Therefore, for any particular country or any group of countries, some of the researchers have found the evidence in support of EKC hypothesis, whereas others did not find any evidence to support the EKC hypothesis.

By and large, the evidences of EKC hypothesis can be divided into two different categories, based on the results obtained in the studies. Following are those two categories:

- (a) Absence of EKC hypothesis: This condition is visible particularly for the underdeveloped and developing economies. In these countries, economic growth has not reached the level, at which environmental degradation can start coming down. Considering the case of these nations, environmental degradation rises with a rise in income, as achieving economic growth is the primary concern of these countries, more than environmental protection. One of the major reasons behind this scenario is that income elasticity of environmental demand in these contexts is low, and therefore, the level of environmental awareness in also low.
- (b) Presence of EKC hypothesis: This condition is visible particularly for transitional, emerging, and developed economies. In these cases, the pattern of economic growth is ecologically sustainable, and countries are already in the process of either curbing down fossil fuel based energy consumption, or encouraging clean and renewable energy consumption. Though the chances of pollution export should not be overlooked, these economies are ahead of the others in terms of social development, which is a major catalyst for enhancement of environmental quality. One of the major reasons behind this scenario is that income elasticity of environmental quality demand in these countries is high and rising, and therefore, the level of environmental awareness in also high.

In the study by Dinda (2004) was also concentrated on the conceptual background and theoretical underpinnings of EKC, rather than the empirical evidences. One major contribution of

this study was that it discussed the several facades of policy recommendations, which may come out of an EKC estimation study. The study was concluded with a generalized critique on the conceptual and methodological designs. In the published literature of energy and environmental economics, the latest study in our knowledge was carried out by Kijima et al. (2010), and this study was not very different from the previous two studies, apart from that it specifically focused on the model building exercises of the studies reviewed.

By far, a huge number of studies have been done on EKC estimation of various pollutants, irrespective of the pollutant is global or local in nature. The present study surveys the literature on EKC estimation for CO₂ emissions for the period of 1991-2017. The objective of the present study is to envisage the current state of knowledge about the EKC estimation for CO₂ emissions, from the perspective of model design, methodological adaptations, and fulfilment of objective. In this paper, all the selected studies are empirical in nature, and we have segregated the studies in terms of the model design (quadratic and cubic specifications), methodological adaptation (time series or panel data techniques), and fulfillment of objective (whether EKC is achieved or not). Apart from pointing out these distinguished features of the studies, we have discussed the impacts of different explanatory variables used in these studies, and how the EKC estimation results vary within a geographical context. This discussion has been done in keeping with the conceptual framework of EKC hypothesis in the background.

The rest of the paper is organized as per the following: Section-2 provides a conceptual background of EKC hypothesis, Section-3 reviews the literature on various model specifications, Section-4 reviews the literature on methodological adaptations, Section-5 reviews the literature on the various outcomes of EKC estimation studies, Section-6 presents the divergence in turnaround

points in geographical contexts, Section-7 reviews the literature on various control variables, and Section-8 presents concludes the study with future directions.

2. The conceptual framework of EKC hypothesis

The premise of EKC hypothesis is based on the interaction between economic growth and environmental degradation, and how the pattern of economic growth can have an adverse effect on environmental quality. According to Grossman (1995), this effect can take place by means of three channels, namely scale effect, composition effect, and technique effect. When the economic growth sets pace, it exerts the scale effect on environment. In order to fuel economic growth, demand of natural resources rises, and consequently, the direct and indirect consumption of natural resources is translated into the production process. Once the production process starts, substantial amount of industrial waste is generated and this by-product of industrial and economic growth poses serious threat to environmental quality. In order to boost economic growth, policymakers overlook the damages to environmental quality, and as a whole, environmental degradation starts to rise with a rise in economic growth. This scenario is visible, especially when the economy is dependent majorly on the primary (agricultural sector) and secondary sectors (manufacturing and industrial sectors). Now, with the rise in income, the industrial structure of a nation starts undergoing a transformation, and therefore, the composition of an economy starts changing. This is where economic growth exerts the composition effect on environmental quality, and this is when the effect of economic growth on environmental quality starts to be positive. During this phase, the secondary sector starts maturing and the industries shift towards cleaner technologies. This industrial transformation is reflected in the urbanization pattern, and the demand for cleaner environment starts increasing. This is the time when the industries start to incorporate technologies for increasing energy efficiency. This progress in the path of technological innovation is the way, by which economic growth exerts the technique effect on environmental quality. During this phase, the tertiary sector (service sector) starts growing, and the economy gradually starts turning out to be knowledge-intensive, rather than capital-intensive. This is the time, when the economy starts investing more in the research and development based activities, and the obsolete and polluting technologies being used in the secondary sector start getting substituted. Therefore, in this phase, environmental quality gradually improves with the rise in economic growth. Now, if this entire phenomenon is graphically represented, then it can be seen that environmental degradation takes a bell-shaped or inverted U-shaped curve, when it is plotted against economic growth (Figure-1). This entire phenomenon is referred to as EKC hypothesis.

Now, income elasticity of environmental quality demand plays a significant role in determining the shape of an EKC, as indicated by several researchers (Beckerman 1992, Stern et al. 1996, Carson et al. 1997, McConnell 1997). The effect of income elasticity on environmental quality can be viewed in terms of the three channels already mentioned. As we have discussed, the scale effect exerts a negative impact on environmental quality during the early stages of economic growth, and it is offset by the positive impacts of composition and technique effects during the later stages of economic growth. This entire phenomenon can be described in terms of income elasticity of environmental quality demand. At the early stages of economic growth, raising the level of income is the primary concern for citizens and policymakers, and this increase in the level of income is achieved even at the cost of environment. When income starts increasing, the living standard of the people improves, and the demand for a better environmental quality starts rising. This demand starts rising which encounters for structural shift. This structural shift takes place in a bilateral manner, i.e. on one hand, the production houses replace their obsolete and polluting technologies with green and cleaner technologies and on other hand, government comes up with

several environmental protection policies and regulations, along with reinstating the existing policy mechanisms. Therefore, the demand for better environment and the response from industrial sector and government encourage the enhancement of environmental quality. This shift becomes possible owing to the rising income elasticity of environmental demand, and it is largely responsible for inverted U-shaped of the EKC.

From another angle, this entire phenomenon can be looked into from the direction of the economists from Club of Rome, who came up with their idea of Limits to Growth, in the year 1972. According to them, economic growth cannot persist for an indefinite period owing to the inadequate availability of natural resources (Meadows et al. 1972). In 1992, with the publication of The First Global Revolution, the Club of Rome stated that, due to human intervention in the natural processes, problems like environmental pollution, scarcity of water, and climatic shifts had been taking place, which had been considered as the main symptoms of environmental degradation (King and Schneider, 1992). In spite of they have been contradicted by several economists based on various contexts and research design related issues (Turner, 2008), emergence of concepts, like intergenerational equity (Solow, 1974) and optimal natural resource extraction path (Stiglitz, 1974a, b) was showing that, the issues being raised by economists of the Club of Rome were noteworthy from sustainable economic growth perspective. An extension of this idea was reflected in the concept of endogenous self-regulatory market mechanism for natural resources (Unruh and Moomaw, 1998). During the early stage of economic growth, more importance is given to the primary (agriculture) and secondary (industrial and manufacturing) sectors, and therefore, natural resources are being faced with high level of exploitation. This overuse of natural resources results in faster depletion of natural resources. Provided the stock of the natural resources is constant at the beginning of economic growth and higher level of economic growth results in higher demand of natural resources, the price of natural resources starts to rise. This rise in the price level of natural resources discourage the industrial houses to utilize more natural resources, as it increases the cost of production, and therefore, they try to shift towards less resource consuming or resource-efficient technologies (Duflou et al. 2012). This shift takes place at the later stages of economic growth, and it is also responsible for the betterment of environmental quality. Therefore, we can also see that market mechanism is also responsible for determining the shape of the EKC.

3. Different Specifications of EKC

Though the number of studies on the EKC estimation for CO_2 emissions is extensive, those studies share some common characteristics in terms of the model specification. Most of the studies employed cross-sectional or panel data for the estimation of EKCs, and the model used by those studies can take the following generalized form:

$$C_{it} = \alpha_i + \beta_1 Y_{it} + \beta_2 Y_{it}^2 + \beta_3 Y_{it}^3 + D_{it} + \epsilon_{it}$$
(1)

Where *C* is CO₂ emissions, *Y* is economic growth, *D* is the additional context specific explanatory variables, *i* is the cross sections, *t* is the time series, α is the constant term, β_k is the coefficients, and *e* is the standard error term. The model represented in equation-1 can be used to obtain several forms of growth-CO₂ emissions association. Following specifications denote specific functional forms:

- (a) $\beta_1 = \beta_2 = \beta_3 = 0$; no growth-CO₂ emissions association
- (b) $\beta_1 > 0$, $\beta_2 = \beta_3 = 0$; linearly increasing growth-CO₂ emissions association
- (c) $\beta_1 < 0$, $\beta_2 = \beta_3 = 0$; linearly decreasing growth-CO₂ emissions association
- (d) $\beta_1 > 0$, $\beta_2 < 0$, $\beta_3 = 0$; inverted U-shaped growth-CO₂ emissions association
- (e) $\beta_1 < 0$, $\beta_2 > 0$, $\beta_3 = 0$; U-shaped growth-CO₂ emissions association
- (f) $\beta_1 > 0$, $\beta_2 < 0$, $\beta_3 > 0$; N-shaped growth-CO₂ emissions association

(g) $\beta_1 < 0$, $\beta_2 > 0$, $\beta_3 < 0$; inverted N-shaped growth-CO₂ emissions association

Out of these model specifications, generally accepted form of EKC is given by the specification (d). In this case, the value of the turnaround point is given by $Y^* = -\beta_1/2\beta_2$. For the case of N-shaped growth-CO₂ emissions association, the values of the turnaround points are given by $Y^* = (-\beta_2 \pm \sqrt{\beta_2^2 - 3\beta_1\beta_3})/3\beta_3$. Now, if we look closely, then we can see that the model specifications and the corresponding turnaround points vary majorly vary in terms of the power of income. The higher powers of income help in identifying the further impacts of income on CO₂ emissions, i.e. finding out the sustainability of EKC in any given context by going beyond the traditional inverted U-shaped form of EKC.

The EKC estimation study on CO_2 emissions started with the work of Shafik and Bandyopadhyay (1992). They have analyzed the per capita carbon emissions for 149 countries over the period 1960-1990 using a number of explanatory variables, e.g. investment, income growth, electricity tariff, percentage of trade in GDP, parallel market premium, Dollar's index of openness, debt, political rights, and civil liberties. They used three model specifications, namely linear, quadratic, and cubic, and the EKC hypothesis was not supported. The researchers have attributed to the subsidized electricity in oil exporting countries, which were the major outliers in the dataset used for empirical analysis. Apart from that, it was also found that civil liberties add to the rise in CO_2 emissions, whereas the countries with higher political rights demonstrated reduction in CO_2 emissions. Similar models and dataset were used in the subsequent study by Shafik (1994) and the results obtained from the study were largely the same. These two studies are the ones to use the EKC estimation models with both lower and higher powers of income, and these studies brought forth the comparative scenarios based on the power of income. Therefore, we will review the literature based on the impact of power of income, and other explanatory variables.

3.1. EKCs with quadratic income

First ever study to consider only quadratic power of income was carried out by Holtz-Eakin and Selden (1995). The study was conducted for a panel of 130 countries over the period of 1951-1986. Using panel regression approach, they found the EKC to be inverted U-shaped, with the turnaround point at \$35,428. Apart from income, no other explanatory variables were used in the study. In a subsequent study by Cole et al. (1997), the researchers tried to estimate the EKC of CO₂ emissions for 7 regions over the period of 1960-1991. Using panel regression technique, they found the EKC to be inverted U-shaped, with the turnaround points between \$25,100 and \$62,700. In this study, they have used energy use as an additional explanatory variable.

A summary of the studies on EKC estimation for CO₂ emissions is provided in Table-1. It can be seen that the EKC estimation exercise for CO₂ emissions has been carried out for a number of contexts over different periods of time. Nearly all of the studies considered different forms of energy consumption as explanatory variables, which is the major factor behind economic growth and environmental degradation. Over the years, the studies have been gradually shifting their focus from fossil fuel energy consumption to renewable energy consumption, along with the macroeconomic and social impacts of environmental degradation (see Table-2). Apart from energy consumption, a diverse set of explanatory variables have been used, as keeping with the respective research contexts. Some of these variables are government effectiveness (Osabuohien et al. 2014), FDI (Tang and Tan 2015, Zhang et al. 2017), financial development (Dogan and Turkekul, 2016), crude oil prices (Balaguer and Cantavella, 2016), urbanization (Farhani and Ozturk 2015, Dogan

and Turkekul 2016), government effectiveness (Ozturk and Al-Mulali, 2015), population growth (Begum et al. 2015), economic liberalization (Tiwari et al. 2013) and many others.

The gradual shift from scale effect to composition and technique effects can be seen in terms of energy consumption and energy use patterns in this scenario. Starting with Cole et al. (1997), researchers started to consider energy consumption within the EKC framework, and the nature of this energy consumption has undergone a change over the years. By using standard OLS model, Lindmark (2002) analyzed the EKC for CO₂ emissions in Sweden over the period of 1870-1997. Though this study did not found the evidence of any EKC, but it demonstrated the effect of fossil fuel consumption on CO₂ emissions, within an EKC framework. Soon, the researchers started to include renewable energy consumption within the EKC framework, as across the world, energy consumption pattern was undergoing a transformation. The study by Richmond and Kaufmann (2006) considered both fossil fuel and renewable energy consumption within the EKC framework. They have analyzed the EKC for CO₂ emissions for 20 developed and 16 developing countries over the period of 1973-1997, and using OLS approach, they have found the EKC to be inverted U-shaped, with the turnaround points between \$29,687 and \$110,599. In this study, energy consumed from coal, oil, and gas were considered as fossil fuel energy consumption, and energy consumed from hydro and nuclear power were considered as renewable energy consumption. Subsequent to this, a number of studies considered both of the forms of energy into consideration. The first study to consider only renewable energy consumption within an EKC framework was carried out by Iwata et al. (2011). The study was conducted for 28 countries over the period of 1960-2003, and they applied mean group (MG), pooled mean group (PGM), and panel regression techniques to estimate the EKCs. They found the EKC to be inverted U-shaped, with the turnaround points between \$77,126.73 and \$141,682.59.

3.2. EKCs with cubic income

First ever study to consider only cubic power of income was carried out by Moomaw and Unruh (1997). The study was conducted for a panel of 16 countries over the period of 1950-1992. Using panel regression approach, they found the EKC to be N-shaped, with the turnaround points at \$12,813 and \$18,133. Apart from income, no other explanatory variables were used in the study. In a subsequent study by Suri and Chapman (1998), the researchers tried to estimate the EKC of CO₂ emissions for 33 countries over the period of 1970-1991. Using feasible generalized least squares technique (FGLS), they found the EKC to be inverted U-shaped, with the turnaround points between \$55,535 and \$143,806. In this study, they have used trade openness as an additional explanatory variable.

A summary of the studies on EKC estimation for CO₂ emissions using cubic income in the EKC framework is provided in Table-1. It can be seen that the EKC estimation exercise for CO₂ emissions has been carried out for a number of contexts over different periods of time, and the results are mostly inconclusive. A number of studies have used energy consumption as an explanatory variable in their empirical models, but the shift from fossil fuel energy consumption to renewable energy consumption has not been much visible in this case (see Table 2). Apart from energy consumption, a diverse set of explanatory variables have been used, as keeping with the respective research contexts. Some of these variables are FDI (Alshehry 2015, Pal and Mitra 2017), public budget in energy research (Álvarez-Herránz et al. 2017), population growth (Akpan and Abang 2015, Shahbaz et al. 2016a), globalization (Shahbaz et al. 2016a), financial development (Moghadam and Dehbashi, 2017) and several others.

The studies in this case also demonstrate the gradual shift from scale effect to composition and technique effects, by means of changes in energy consumption and energy use patterns. The study by Lee et al. (2009) was conducted on 89 countries over the period of 1960-2000. Using system GMM, they found the EKCs to be inverted U-shaped with turnaround point at \$17,620, and N-shaped with turnaround points at \$15,400 and \$30,780. This was the first ever study to include fossil fuel energy consumption within the EKC framework with cubic income. Following this study, researchers started to include fossil fuel energy consumption within the EKC framework. During the second half of 2010, researchers started to include renewable energy consumption within the EKC framework. López-Menéndez et al. (2014) estimated the EKC for 27 EU countries over the period of 1996-2010, and it was the first ever study to include renewable energy consumption within the EKC framework with cubic income. Using panel cointegration technique, the EKC was found to be N-shaped with the turnaround points outside the sample space.

4. Impact of methodological adaptations

In this section, we provide the outcomes of the reviewed EKC estimation studies, which can be segregated into the following categories: (a) studies employing methods pertaining to time series data, and (b) studies employing methods pertaining to panel data. For both of the cases, studies have discovered various shapes of the EKCs, whereas some studies found no evidence of EKC. In the following sections, we will discuss about these two categories.

4.1. Impact of time series data methods

We summarize the findings of the reviewed EKC estimation studies for CO_2 emissions using time series data in Table-3 and 4. Out of the reviewed studies, quadratic form of EKC is the most prominent one among the entire strata. From methodological perspective, ARDL bounds test has been used the most in the studies, followed by cointegration test.

The first EKC estimation study for CO_2 emissions using time series data was carried out by Roca et al. (2001). The study was conducted on Spanish data over the period of 1973-1996, and OLS was employed to estimate the EKC. However, no EKC was found for Spain. The study by Ang (2007) was the earliest one to find the evidence of EKC using time series data. Employing ARDL bounds test, the study was conducted for France over the period of 1960-2000. The turnaround point of the inverted U-shaped EKC was found to be 11,096.35 (measured in local currency). One of the latest EKC estimation studies carried out in 2017 was done by Ozatac et al. (2017), and this study was conducted for Turkey over the period of 1960-2013. By employing the ARDL bounds test approach, this study also found the evidence of inverted U-shaped EKC for CO₂ emissions, with turnaround point at USD 16,648.84.

Now, if we talk about the N-shaped EKC for CO₂ emissions, cointegration test comes into picture. This study was carried out by Akbostancı et al. (2009) for Turkey over the period of 1968-2003. They have employed cointegration technique to arrive at the inverted N-shaped form of the EKC, with the turnaround points at USD 1,437.80 and USD 1,603.90. This was also the first study on EKC estimation for CO₂ emissions to employ cointegration technique. The study by Chuku (2011) was the first one to provide an evidence of inverted U-shaped EKC. The study was carried out on Nigerian context over the period of 1960-2008, and the turnaround point was achieved at USD 280.84. This is also by far the last study to show the evidence of N-shaped EKC by employing cointegration technique.

During 1991-2017, nearly eight broad categories of time series data methods have been applied, and the results obtained from these studies have been inconclusive. The reviewed studies have demonstrated conflicting results and there is no consensus regarding the existence or shape of the EKC.

4.2. Impact of panel data methods

We summarize the findings of the reviewed EKC estimation studies for CO_2 emissions using panel data in Table-3 and 4. Out of the reviewed studies, quadratic form of EKC is the most prominent one among the entire strata. From methodological perspective, panel regression test has been used the most in the studies, followed by FMOLS.

The first EKC estimation study for CO_2 emissions using panel data was carried out by Holtz-Eakin and Selden (1995). This study was carried out for 130 countries over the period of 1951-1986, and using panel regression approach, this study showed the evidence of inverted Ushaped EKC, with the turnaround point at USD 35,428. Panel regression is the only method found in this review of literature to show the first evidence of all shapes of EKC. Though a number of sophisticated econometric techniques are being discovered for panel data models, panel regression has been proven to be successful for EKC estimation purpose.

Subsequent to panel regression approach, researchers have employed FMOLS the most to estimate the EKC using panel data. The first study to employ the FMOLS was carried out by Apergis and Payne (2009). The study was carried out for 6 Central American countries over the period of 1971-2004. Using FMOLS approach, this study found the evidence of inverted U-shaped EKC. During the last phase of 2017, a study by Zhang et al. (2017) was carried out for 10 Newly Industrialized countries over the period of 1971-2013. Using FMOLS, the study found the evidence of inverted U-shaped EKC, with turnaround point at USD 125.97. Apart from this, this study has also employed OLS and DOLS method, and showed the evidence of inverted U-shaped EKC, both with turnaround points at USD 127.97.

For the entire study period, nearly 23 broad categories of panel data methods have been applied, and the results obtained from these studies have been inconclusive. Similar to the studies pertaining to time series data models, in this case also the reviewed studies have demonstrated conflicting results and there is no consensus regarding the existence or shape of the EKC.

5. Model outcomes

In this section, we provide the outcomes of the reviewed EKC estimation studies, which can be segregated into the following categories: linear (monotonically increasing or decreasing), inverted U-shaped, U-shaped, inverted N-shaped, N-shaped, and no EKC. These studies are further segregated into the nature of data employed in these studies, i.e. time series and panel data. In the consecutive subsections, we will discuss about these two categories.

5.1. Model outcomes for time series data

We summarize the findings of the reviewed EKC estimation studies for CO_2 emissions using time series data in Table-5. Out of the reviewed studies, inverted U-shaped form of EKC is the most prominent one among the entire strata.

Roca et al. (2001) carried out the earliest EKC estimation study for CO_2 emissions using time series data, and the study was conducted on Spanish data over the period of 1973-1996. The researchers used the cubic specification for EKC estimation, and no EKC was found for Spain. The researchers attributed this phenomenon to the low volume of data for carrying out such an analysis. In this context, a latest study by Pal and Mitra (2017) needs special mention. The study was conducted on Indian and Chinese data over the period of 1971-2012, and the researchers employed ARDL bounds test for estimating the EKC for CO_2 emissions in these countries. Though the study concluded by a mere mention of an N-shaped EKC, the model specifications did not comply with the conditions outlined in section 3. Therefore, we had to conclude that the study did not actually find the evidence of any EKC. One of the earliest studies to achieve the generally accepted inverted U-shaped form of EKC was carried out by Ang (2007). Using quadratic model specification, the study was conducted for France over the period of 1960-2000. The researchers employed ARDL bounds test of cointegration, and found the EKC to be inverted U-shaped with the turnaround point at 11,096.35 (measured in local currency). As per our knowledge, this was also the first study in the literature to consider the ARDL bounds test to estimate EKC for CO₂ emissions for any given context. On the other hand, the study by Omisakin (2009) on Nigerian data over the period of 1970-2005 was the first EKC estimation study for CO₂ emissions to arrive at a U-shaped form of EKC. The researcher employed OLS technique for the estimation purpose, and the turnaround point was estimated at 1,600 (measured in local currency).

The study by Abdallah et al. (2013) is one of the earliest studies to discover the inverted N-shaped EKC for CO₂ emissions using time series data. The study was conducted on Tunisian road transport sector over the period of 1980-2010. Using vector error correction method (VECM), the researchers found the EKC to be inverted N-shaped, with the turnaround points at 74.88 and 578.82 (measured in local currency). In this study, per capita transport value added was chosen as the indicator of economic growth. Ten years earlier, the study by Friedl and Getzner (2003) was one of the earliest studies to find the evidence of N-shaped EKC for CO₂ emissions using time series data. The study was conducted on Austrian data over the period of 1960-1999, and cointegration technique was used to estimate the EKC. In this study, the researchers found two sets of turnaround points: (a) ignoring the structural breaks, the points were 893.83 and 33,200.96 (measured in Euro), and (b) considering structural breaks, the points were 976.50 and 32,965.66.

5.2. Model outcomes for panel data

We summarize the findings of the reviewed EKC estimation studies for CO_2 emissions using panel data in Table-5. Out of the reviewed studies, inverted U-shaped form of EKC is the most prominent one among the entire strata.

Magnani (2001) carried out the earliest EKC estimation study for CO_2 emissions using panel data, and the study was conducted for 152 countries over the period of 1970-1990. Panel regression was employed to estimate the EKC for CO_2 emissions, and the no evidence of EKC was found in the study. In an earlier study, Shafik and Bandyopadhyay (1992) investigated the EKC for CO_2 emissions for 149 countries over the period of 1960-1990. Following the same methodological approach, the researchers found the EKC to be Monotonically Increasing.

The earliest study to find the evidence of generally accepted inverted U-shaped form of EKC was carried out by Holtz-Eakin and Selden (1995). The study was conducted for 130 countries over the period of 1951-1986. Following quadratic specification and panel regression approach, the researchers found the EKC to be inverted U-shaped, with the turnaround point at USD 35,428. On the other hand, the study conducted by Halkos and Tzeremes (2009) was one of the earliest one to find the evidence of U-shaped EKC for CO₂ emission using panel data. The study was conducted for 17 OECD countries over the period of 1980-2002, and the researchers employed panel regression method to estimate the EKC. Using fixed effect, the turnaround point was achieved at USD 11,151.96, and using random effect, the same was achieved at USD 15,949.37.

The study by Moomaw and Unruh (1997) was the earliest study to find the evidence of N-shaped EKC for CO_2 emissions using panel data. The study was conducted for 16 countries over the period of 1950-1992. Following a cubic specification and employing panel regression approach, the researchers found the evidence of N-shaped EKC, with turnaround points at USD

12,813 and USD 18,133. Later, a study by Dijkgraaf and Vollebergh (2005) on 24 OECD countries over the period of 1960-1997 was one of the earliest studies to find the evidence of inverted N-shaped EKC. The study employed panel regression approach, and study revolved around three models: (a) country-fixed effects model, (b) time and country-fixed effects model, and (c) country heterogeneity model. For the first two instances, the EKC was found to be inverted N-shaped, and for the third instance, EKC could not be achieved. For the first model, the turnaround points were USD 252.44 and USD 26,295.51, and for the second model, the turnaround points were USD 358.62 and USD 20,589.59.

6. Geographical context and divergence in turnaround points

In the literature of EKC hypothesis, it has been seen that the turnaround point of the EKC for any geographical location varies from one study to another. This divergence arises owing to the changes in study period, methodological adaptation, power of income, and choice of control variables. In this section, we will consider few geographical locations and the turnaround points achieved by the studies conducted in those locations. India, Turkey, and China have been chosen as the sample geographical locations.

For India, the earliest study to achieve an inverted U-shaped EKC was conducted by Pao and Tsai (2010). The study was conducted for BRIC countries over the period of 1971-2005, and using cointegration, the turnaround point was found to be at USD 427.80. By far, Nasreen et al. (2017) has conducted the latest study on EKC estimation for CO₂ emissions in India, and to arrive at an inverted U-shaped EKC. This study was carried out for 5 South Asian countries over the period of 1980-2012, and turnaround point was achieved at USD 788.40. The whole spectrum of turnaround points achieved for the studies conducted on CO₂ emissions in India is depicted in Figure-2. According to the studies reviewed by us, the lowest turnaround point (\approx USD 209.43) was achieved by Kanjilal and Ghosh (2013), and the highest turnaround point (\approx USD 26,517.29) was achieved by Tiwari et al. (2013).

Now, we will move towards Turkey. The earliest study to achieve an inverted U-shaped EKC for CO₂ emissions in Turkey was conducted by Halicioglu (2009). The study was carried out over the period of 1960-2005, and using ARDL bounds test, the turnaround point was found to be USD 1,661.81. A latest study by Ozatac et al. (2017) was carried out over the period of 1960-2013. Using ARDL bounds test, the turnaround point was found to be USD 16,648.84. The whole spectrum of turnaround points achieved for the studies conducted on CO₂ emissions in Turkey is depicted in Figure-3. According to the studies reviewed by us, the lowest turnaround point (\approx USD 1,661.81) was achieved by Halicioglu (2009), and the highest turnaround point (\approx USD 16,945.73) was achieved by Shahbaz et al. (2016b).

Lastly, we will move towards China. The earliest study to achieve an inverted U-shaped EKC for CO₂ emissions in China was conducted by Jalil and Mahmud (2009). The study was carried out over the period of 1975-2005, and using ARDL bounds test, the turnaround point was found to be RMB 12,992 (\approx USD 2,063.00). A latest study by Wang et al. (2017) was carried out over the period of 2000-2013 for 30 Chinese provinces. Taking panel regression approach, the turnaround points were found to be between USD 656.37 and USD 176,361.65, across mining, manufacturing, and electricity and heat production sectors. The whole spectrum of turnaround points achieved for the studies conducted on CO₂ emissions in China is depicted in Figure-4. According to the studies reviewed by us, the lowest turnaround point (\approx USD 204.51) was achieved by Liu et al. (2015), and the highest turnaround point (\approx USD 176,361.65) was achieved by Wang et al. (2017).

By far, we have looked into the contexts of three countries, where inverted U-shaped EKCs were achieved, and how the turnaround points vary for a single country. Similarly, the divergence can be seen in case of cross-country evidences. For this case, we will take the example of OECD countries. These studies have considered different samples of OECD member countries, different study periods, and various methodological adaptations. Consequently, the studies demonstrate different shapes of EKC, i.e. inverted U-shaped, U-shaped, inverted N-shaped, N-shaped, and linear. The study by Martínez-Zarzoso and Bengochea-Morancho (2004) was conducted on 22 OECD countries over the period of 1975-1998. They found the evidence of both inverted U-shaped and N-shaped EKCs. For the N-shaped EKCs, the first turnaround point ranges from USD 1,302.28 to USD 3,022.86, and the second turnaround point ranges from USD 8,466.38 to USD 59,264.58. For the inverted U-shaped EKC, the turnaround point was found at USD 403.05. Recently, the study by Álvarez-Herránz et al. (2017) provided the evidence of N-shaped EKC for 28 OECD countries over the period of 1990-2014. The turnaround points of the EKC found by the researchers were USD 20,885.38 and USD 67,309.06. On the other hand, the evidence of inverted N-shaped -EKCs were found by Dijkgraaf and Vollebergh (2005) and Vollebergh et al. (2005). For these studies, the first turnaround points range from USD 252.44 to USD 902.72, and the second turnaround points range from USD 15,835.30 to USD 26,295.51. A similar kind of divergence can be seen for the inverted U-shaped EKCs, as well. The maximum value of turnaround point for an inverted U-shaped EKC has been found to be USD 268,337.29 by Bilgili et al. (2016), whereas Martínez-Zarzoso and Bengochea-Morancho (2004) has found the turnaround point to be USD 403.05. Lastly, for U-shaped EKCs, the lowest turnaround point was found to be USD 11,151.96 in a study by Halkos and Tzeremes (2009), whereas the maximum value was found to be USD 206,249.55, as reported by Dogan et al. (2015).

Therefore, we have seen that the divergence in terms of shape and turnaround point of EKC not only varies across the geographical context, but also within the geographical context. However, within a geographical context, temporal boundary, methodological selection, and choice of control variables play significant roles. This finding is in the similar lines with the finding of Stern (2017).

7. Impact of other explanatory variables

The mathematical form of EKC given in equation-1 elucidates that the error term might include the influence caused by other explanatory variables. Now, if the scale, composition, and technique effects are considered, then apart from income, three other major explanatory variables come to pass, i.e. trade openness, fossil fuel consumption, and renewable energy consumption. There has been a wide array of control variables used in the EKC estimation studies. However, we have chosen these three variables, as researchers have been employing these three variables mostly in their empirical models.¹ Over the years, researchers are considering these variables within the EKC framework. We will now discuss these three explanatory variables one-by-one.

7.1. Impact of trade openness

The study by Agras and Chapman (1999) was the first one to consider the aspect of trade openness in an EKC framework. Following a quadratic specification, the study was conducted for the United Nations over the period of 1971-1989. Using panel regression technique, the EKC was found to be inverted U-shaped, with turnaround points between \$51.65 and \$101.03. In this study, the researchers found import to have negative impact on CO₂ emissions, whereas export has positive impact on CO₂ emissions. Atici (2009) analyzed the EKC for 4 countries over the period of 1980-2002. Following a quadratic specification and applying panel cointegration technique, the researcher found the EKC to be inverted U-shaped, with turnaround point between \$2,077 and

¹ Out of 171 reviewed studies, 105 studies (Trade Openness - 61, Fossil Fuel Energy Consumption - 88, Renewable Energy Consumption - 19) have referred to these three variables.

\$3,156. In this study, the researcher used trade openness index, and it found to have negative impact of CO_2 emissions. However, in the study of Halicioglu (2009), the impact was found to be positive. This study was conducted for Turkey over the period of 1960-2005, and using ARDL bounds approach, the EKC was found to be inverted U-shaped with turnaround point at \$1,661.81.

The study by Jalil and Mahmud (2009) was the first stud to consider total trade volume as the indicator of trade openness. This study was conducted on China over the period of 1975-2005. Following quadratic specification and ARDL bounds approach, the EKC was found to be inverted U-shaped with turnaround point at \$40.82. In this study, the impact of trade volume on CO_2 emissions was found to be negative. A subsequent study by Tamazian et al. (2009) introduced foreign direct investment (FDI) as a proxy for trade openness. In this study, they estimated the EKC for BRIC countries over the period of 1992-2004, and following panel cointegration, the EKC was found to be inverted U-shaped with turnaround point between \$90.02 and \$36,315.50. In this study, FDI stock has both positive and negative impact on CO_2 emissions.

A summary of the studies on EKC estimation for CO_2 emissions considering trade openness is provided in Table-2. It can be seen that the studies have used various indicators of trade openness and the results obtained from using those indicators are inconclusive in nature, irrespective of the nature of the empirical model or context.

7.2. Impact of fossil fuel energy consumption

Cole et al. (1997) conducted the first EKC estimation study on CO_2 emissions. Following a quadratic specification, this study was conducted for 7 countries over the period of 1960-1991. Using panel regression approach, the EKC was found to be inverted U-shaped, with turnaround points between \$25,100 and \$62,700. In this study, the impact of total energy use on CO_2 emissions has been found to be positive. Subsequent to this, the work by Lindmark (2002) is the EKC estimation study carried out on a single country. In this study, the researcher found the fossil fuel based energy consumption to have a direct positive impact on CO_2 emissions. However, both of these studies considered quadratic income in the empirical framework of EKC.

The first EKC estimation study for CO_2 emissions considering fossil fuel energy consumption within a cubic framework was carried out by Lee et al. (2009). The study was done for 89 countries over a period of 1960-2000. Using system GMM approach, the EKCs were found to be inverted U-shaped with turnaround point at \$17,620, and N-shaped with turnaround points at \$15,400 and \$30,780. In this study, the researchers found the fossil fuel based energy consumption to have a direct positive impact on CO_2 emissions. First single country analysis in this context was carried out by He and Richard (2010). The study was conducted for Canada over the period of 1948-2002. Taking OLS approach, the EKC was found to be inverted U-shaped with the turnaround point at \$22,615. In this study also, the researcher found the fossil fuel based energy consumption to have a direct positive impact on CO_2 emissions.

A brief summary of these studies are provided in Table-2. It can be seen that for all the cases, the impact of fossil fuel based energy consumption on CO_2 emissions has been positive.

7.3. Impact of renewable energy consumption

In the EKC estimation studies on CO₂ emissions, renewable energy consumption has been started to be considered since the mid-2000, and till now, it has been used in various forms and in aggregate form, as well. The first study to consider renewable energy consumption was carried out by Richmond and Kaufmann (2006). Following a quadratic specification, this study was carried out for 36 countries over the period of 1973-1997, and using OLS approach, the EKC was found to be inverted U-shaped, with turnaround points between \$29,687 and \$110,599. This study used hydro and nuclear energy consumption within the empirical framework. The study by Iwata et al.

(2011) considered only nuclear energy consumption within the EKC framework, and it had a negative impact on CO_2 emissions. This segment of result falls in line with the findings of Baek and Kim (2013).

The study by Sulaiman et al. (2013) considered total renewable energy production for the first time within the EKC framework. Following a quadratic model, this study was done for Malaysia over the period of 1980-2009, and using ARDL bounds test, the EKC was found to be inverted U-shaped, with turnaround point at \$8.77K. In this case, the impact of renewable energy production on CO₂ emissions was found to be negative. This result was supported by Bölük and Mert (2015), Ben Jebli et al. (2015), Al-Mulali and Ozturk (2016), Dogan and Seker (2016), Jebli et al. (2016), and others, whereas contradicted by Bölük and Mert (2014), Farhani and Shahbaz (2014). Jebli and Youssef (2015) presented mixed results in this context. A brief summary of the studies is listed in Table-2.

7.4. Impact of socio-political parameters

Apart from the three variables mentioned, social parameters also play a pivotal role in EKC estimation studies. Several researchers identified the significance of social and political parameters in determining the shape of an EKC (Cantore 2009, Ibrahim and Law 2014, Sinha and Bhattacharya 2016). According to Panayotou (1993), when the economy reaches the newly industrialized phase, the high level of economic growth is ecologically threatened, and thereby, disequilibrium is created. In order to settle this disequilibrium, along with economic pressure, social and political pressures are also created for enforcing environmental regulations and ecological protection. Therefore, inclusion of socio-political parameters within an EKC framework can always bring forth significant policy implications.

Farzin and Bond (2006) analyzed the EKC for 45 countries over the period of 1980-1998. In this study, the researchers have theoretically shown the impact of societal preferences on environmental quality. They have included democracy and its interaction with income inequality, age composition, and education level within the empirical framework of EKC. Except democracy, rest of the three factors found to have positive impact on CO₂ emissions. This concept was also adapted by Mills and Waite (2009) in the form of democracy index. Dutt (2009) analyzed the EKC for 124 countries over the period of 1984-2002. The researcher included governance, political institutions, government expenditure on education, years of schooling, unemployment, poverty, and consumer confidence within the empirical framework of EKC. These parameters found to have negative impact on CO₂ emissions. Tamazian and Rao (2010) analyzed the EKC for 24 transition economies over the period of 1993-2004. They have included institutional quality as a measure for efficiency in the empirical framework, and it has found to have negative impact on CO₂ emissions. Taguchi (2013) analyzed the EKC for 19 Asian countries over the period of 1950-2009. They have included the later development of the economy within the empirical framework of EKC, and it has found to have a negative impact on CO₂ emissions. Farhani et al. (2014b) analyzed the EKC for MENA countries over the period of 1990-2010. They have included human development indicator (HDI) in their empirical framework, and found to have positive impact on CO₂ emissions. However, this segment of their results was contradicted by Sinha and Sen (2016). Osabuohien et al. (2014) analyzed the EKC for 50 African countries over the period of 1995-2010. They have included institutional quality in their empirical model, and it was measured by average value of rule of law, regulatory quality, and government effectiveness. For the oil-producing countries in the sample, institutional quality found to have positive impact on CO₂ emissions, whereas for the non-oil-producing countries, the institutional quality found to have negative impact.

These indicators have been mostly used in the EKC estimation studies on CO_2 emissions. It is evident that the impacts of these parameters are highly dependent on the context, as the nature of these parameters change in accordance with the context. Therefore, while choosing any context, the socio-political parameters need to be chosen carefully, as a parameter used in one context might not be a proper fit for the second context.

8. Conclusion and Future Directions

The objective of this study is to survey the literature dealing with the EKC estimation of CO₂ emissions, and to understand the existing body of knowledge from the perspective of methodological adaptation, model design, and outcome. The literature on this particular field is growing rapidly with the advent of latest technologies in the field of alternate energy sources, and the studies are focusing on emerging and developed economies. As the natures of growth in both of these cases are radically different from each other, therefore the policymakers should be aware of the dual impact of energy consumption pattern on economic growth and environmental degradation. A broad conclusion from the reviewed studies is that there is no consensus regarding the existence or shape of EKC, i.e. for any geographical context, researchers can come up with different and opposing set of results. These conflicting results may arise due to the time frame of the study, the choice of explanatory variables, and the methodological adaptation.

One observation that we can make from these empirical studies is that, almost all of the studies have by and large focused on analyzing the existence of EKCs, the occurrences of the turnaround points, and the shape of the EKCs. However, out of all the studies reviewed, we have encountered only a handful number of studies, which have also considered the height of the EKCs.

This is an aspect, which is largely missing in the recent empirical literature on the EKC estimation. There are possibilities that the emissions beyond a certain level might not be reversible, and that is the point, from where environmental degradation will only rise monotonically. This is one major aspect, which is largely missed out in empirical analysis carried out during estimation of EKC in any context. If the studies done for a particular country or a group of countries can be seen together, then it becomes visible that the EKCs estimated in that context is not stable, as a change in the time frame can change the shape of EKC, and sometimes even its existence (see Table-1). Saying this, it might be wrong to suggest policy implications based on mere empirical results, which just reveal the turnaround level of economic growth, because the policy recommendations should also take into account the height of the EKCs. Therefore, it will make the policymakers not to wait for the turnaround point to occur, but it will make them to intervene for flattening the EKC.

Environmental sustainability is a part of the broader sustainable development. The recent empirical literature on EKC estimation has been largely inclined towards considering the diverse aspects of economic growth, like international trade, financial development, research and development, globalization, crude oil price, population, etc. The definition of turnaround point in EKC hypothesis is based on the idea of environmental awareness, which is highly correlated with social sustainability. It signifies that without social sustainability, a nation can never achieve environmental sustainability. Therefore, the social indicators should be incorporated within the EKC framework. For example, a country with high literacy rate and low unemployment is expected to have lower level of environmental degradation compared to the country with low literacy rate and high unemployment. Perhaps that is the reason why the developed nations have been able to achieve the turnaround point of EKC, when the developing and emerging economies are yet to reach that. This is a lesson, which the developing and emerging economies should learn from the developed nations, rather than replicating their models in their own countries. In order to achieve the turnaround point in a sustainable manner, these economies should consider a people-public-private partnership approach, which can ensure an inclusive growth, a recipe for sustainable development.

While carrying out any EKC estimation study, it should be remembered that carrying out the study on similar contexts and using new time frame and methodologies might not prove to be fruitful, as it might not add any substantial contribution to the existing energy economics literature. Therefore, the future studies in this context should not only consider new set of variables, but also the dataset should be refined, so that the EKC estimation issues raised by Stern (2004) can be addressed. Considering new perspectives, new set of variables, and going beyond the time series evidences can produce more productive results, based on which the policymakers can come out with substantial policy recommendations for encountering environmental degradation, thereby flattening the EKCs.

The survey of the literature divulged that the number of studies pertaining using panel data is higher compared to those using time series data. While carrying out any EKC estimation study, it should be remembered that providing a cross-country analysis, or intra-provincial analysis for a country, or cross-sector analysis for any country can bring more insights. The major reason behind this is bringing forth comparable references within the geographical context will allow the policymakers to make an informed decision, as the results will depict a comparative scenario. As a future direction, it can be stated that employing robust panel data methods, like FMOLS and GMM might bring forth more significant insights. On the other hand, if the study is conducted on time series data, then the researchers should consider the ARDL bounds test approach, as it will allow the researchers to consider different lag lengths for the control variables, thereby bringing more flexibility in the study.

If the methodological adaptation is kept apart, future studies should consider the variables, like corruption index, social indicators, political scenario, investment in research and development for alternate energy exploration, economic complexity, exports diversity, foreign capital inflows (especially foreign remittances), economic, social and political cooperation etc. These variables might prove to be fruitful, while considering the developing or emerging economies, as these aspects largely influence the environmental degradation scenario in those nations. A number of studies are also considering the interaction variables, which are bringing forth more robustness to the studies (Balsalobre et al., 2015; Álvarez-Herránz et al., 2017; Sinha et al., 2017). This is an aspect, which should be remembered while designing the robust EKC models. Apart from that, the researchers should also consider the model specifications to go beyond the cubic income, as this can have some far-reaching consequences.

Author(s)	Context	Power of Income	Type of Data	Methodology	Shape of EKC	Turnaround Point(s	s)
Shafik and Bandyopadhyay (1992)	149 countries (1960- 1990)	Cubic	Panel	Panel regression	Monotonically Increasing	NA	
Shafik (1994)	149 countries (1960- 1990)	Cubic	Panel	Panel regression	Monotonically Increasing	NA	
Holtz-Eakin and Selden (1995)	130 countries (1951- 1986)	Quadratic	Panel	Panel regression	Inverted U-shaped	35,428	
Cole et al. (1997)	7 countries (1960- 1991)	Quadratic	Panel	Panel regression	Inverted U-shaped	Model I Model II	62,700 25,100
Moomaw and Unruh (1997)	16 countries (1950- 1992)	Cubic	Panel	Panel regression	N-shaped	a. 12,813 b. 18,133	
					Inverted U-shaped	Model I	3.94
1 (1000)	United Nations		D 1		Inverted U-shaped	Model II	4.62
Agras and Chapman (1999)	(1971-1989)	Quadratic	Panel	Panel regression	Monotonically Increasing	Model III	NA
					Inverted U-shaped	Model IV	2.60
						All countries	16,646 15,073
Galeotti and Lanza (1999)	110 countries (1960- 1996)	Quadratic	Panel	Panel regression	Inverted U-shaped	Annex I Countries	17,855 17,961
						Non-Annex I Countries	21,757 19,340
Magnani (2001)	152 countries (1970- 1990)	Cubic	Panel	Panel regression	No EKC	NA	,
Roca et al. (2001)	Spain (1973-1996)	Cubic	Time Series	OLS	No EKC	NA	
Hill and Magnani (2002)	156 countries (1970- 1990)	Cubic	Panel	Pooled OLS	N-shaped	a. 3,007.01 b. 721,919.40	
Lindmark (2002)	Sweden (1870-1997)	Quadratic	Time Series	Kalman Filter	No EKC	NA	
Day and Grafton (2003)	Canada (1958-1995)	Cubic	Time Series	OLS	N-shaped	a. 19,133.10 b. 20,760.86	
	İ.	Linear	1		Monotonically Increasing	NA	
		Quadratic	1		Monotonically Increasing	NA	
Friedl and Getzner (2003)	Austria (1960-1999)		Time Series	OLS	N-shaped	a. 893.83 b. 33,200.96	
		Cubic			N-shaped	a. 976.50 b. 32,965.66	

Table-1: Evidences of EKC estimation studies for CO₂ emissions

					Monotonically Increasing	Model I	NA
Shi (2003)	93 countries (1975-	Linear	Donal	GLS	Monotonically Increasing	Model II	NA
Sili (2003)	1996)		Panel	GLS	Monotonically Increasing	Model III	NA
		Quadratic			Inverted U-shaped	Model IV	4,591,065.28
	111 (1000					Model I	9.28
York et al. (2003)	111 countries (1960-	Quadratic	Panel	OLS	Inverted U-shaped	Model II	12.15
	2000)				*	Model III	16.28
				MG	N-shaped	Model I	a. 1,302.28 b. 56,916.37
				PMG	No EKC	Model II	NA
				Fixed Effect	No EKC	Model III	NA
				MG	N-shaped	Model IV	a. 2,602.38 b. 19,040.74
				PMG	Inverted U-shaped	Model V	403.05
				Fixed Effect	No EKC	Model VI	NA
Aartínez-Zarzoso and Bengochea- Aorancho (2004)22 OECD countries (1975-1998)	Cubic	Panel	MG	N-shaped	Model VII	a. 1,576.99 b. 32,366.41	
				PMG	N-shaped	Model VIII	a. 3,022.86 b. 47,893.69
				Fixed Effect	No EKC	Model IX	NA
			MG	N-shaped	Model X	a. 1,772.15 b. 8,466.38	
				PMG	N-shaped	Model XI	a. 1,604.56 b. 59,264.58
				Fixed Effect	No EKC	Model XII	NA
				OLS	Inverted U-shaped	Model I	15,581.60
				OLS	Monotonically Increasing	Model II	NA
				FGLS	Inverted U-shaped	Model III	16,279.70
A11 (2005)	TI US (10(0, 1000)		D 1	FGLS	Inverted U-shaped	Model IV	18,501.02
Aldy (2005)	The US (1960-1999)	Quadratic	Panel	OLS	Inverted U-shaped	Model V	19,979.04
				OLS	Inverted U-shaped	Model VI	26,903.19
				FGLS	Inverted U-shaped	Model VII	23,118.47
				FGLS	Inverted U-shaped	Model VIII	19,674.86
	24 OECD soundsiss				Inverted Nichanad	Model I	a. 252.44 b. 26,295.51
Dijkgraaf and Vollebergh (2005)	24 OECD countries (1960-1997)	Cubic	Panel	Panel regression	Inverted N-shaped	Model II	a. 358.62 b. 20,589.59
					No EKC	Model III	NA

	24 OECD countries			Panel regression (Parametric)		a. 387.47 b. 15,835.30	
Vollebergh et al. (2005)	(1960-2000)	Cubic	Panel	Panel regression (Semi- parametric)	Inverted N-shaped	a. 902.72 b. 23,944.04	
Farzin and Bond (2006)	45 countries (1980- 1998)	Cubic	Panel	Panel regression	Monotonically Increasing	NA	
Galeotti et al. (2006)	OECD countries (1960-1998)	Cubic	Panel	Panel regression	Inverted U-shaped	Between 8,384.7	2 and 16,881.79
Lantz and Feng (2006)	Canada (1970-2000)	Quadratic	Time Series	GLS	Monotonically Increasing	NA	
<u> </u>		Linear			Monotonically Increasing	Model I	NA
		Linear			Monotonically Increasing	Model II	NA
		Quadratic			Monotonically Increasing	Model III	NA
		Linear			Monotonically Increasing		NA
		Linear	_		Monotonically Increasing	Model IV	NA
	36 countries (1973-	Linear		o	Monotonically Increasing	_	NA
Richmond and Kaufmann (2006)	1997)	Linear	— Panel	OLS	Monotonically Increasing		NA
	,	Linear			Monotonically Increasing	Model V	NA
		Linear	_		Monotonically Increasing		NA
		Quadratic			Monotonically Increasing		NA
		Quadratic			Inverted U-shaped	Model VI	32,810.92
		Quadratic			Monotonically Increasing		NA
Ang (2007)	France (1960-2000)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	11,096.35	I
					*	,	1,500.00
						With Trade	1,650.00
							1,610.31
	4 South Asian					With Taxes	598.80
Faiz-Ur-Rehman et al. (2007)	countries (1983-	Quadratic	Panel	Pooled regression	Inverted U-shaped	With Import	994.04
	2006)					Duties	649.35
						With Export	1,031.99
						Duties	769.23
							4,340.91
	Japan and China		_		Inverted U-shaped	Japan	4,348.66
Yaguchi et al. (2007)	(1975-1999)	Quadratic	Panel	Panel regression			NA
					Monotonically Increasing	China	NA
					Monotonically Increasing	Model I	NA
York (2007)	14 EU countries	Quadratic	Panel	Prais-Winsten	· · ·	Model II	4.44K
	(1960-2000)	Quauranc		regression	Inverted U-shaped	Model III	5.43K
Akbostancı et al. (2009)	Turkey (1968-2003)	Cubic	Time Series	Cointegration	N-shaped	Model I	a. 1,437.8

							b. 1,603.9
					No EKC	Model II	NA
Apergis and Payne (2009)	6 Central American countries (1971- 2004)	Quadratic	Panel	FMOLS	Inverted U-shaped	1.79K	
Atici (2009)	4 countries (1980- 2002)	Quadratic	Panel	Panel cointegration	Inverted U-shaped	Fixed effect Random effect	2,077 3,156
Dutt (2009)	124 countries (1984- 2002)	Quadratic	Panel	Robust OLS Panel regression	Inverted U-shaped	Model I Model II	29,158.42 29,822.46
Halicioglu (2009)	Turkey (1960-2005)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	Model III 1.661.81	28,730.62
Halkos and Tzeremes (2009)	17 OECD countries (1980-2002)	Quadratic	Panel	Panel regression	U-shaped	Fixed effect Random effect	11,151.96 15,949.37
Jalil and Mahmud (2009)	China (1975-2005)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	12,992	10,515107
					Inverted U-shaped	17,620	
Lee et al. (2009)	89 countries (1960- 2000)	Cubic	Panel	System GMM	N-shaped	a. 15,400 b. 30,780	
Omisakin (2009)	Nigeria (1970-2005)	Quadratic	Time Series	OLS	U-shaped	1,600	
`, , , , , , , , , , , , , , , , ,	BRIC countries	Linear		Panel	Monotonically Increasing	BRIC US, Japan and BRIC	NA NA
Tamazian et al. (2009)	(1992-2004)	Quadratic	Panel	cointegration	Inverted U-shaped	ng US, Japan and BRIC BRIC US, Japan and BRIC	90.02 36,315.50
					No EKC	Austria	NA
					No EKC	Belgium	NA
					Inverted U-shaped	Denmark	18,285.64
					No EKC	Finland	NA
					No EKC	France	NA
					No EKC	Germany	NA
	19 European		T : C :		No EKC	Greece	NA
Acaravci and Ozturk (2010)	countries (1960-	Quadratic	Time Series	ARDL bounds	No EKC	Hungary	NA
	2005)				No EKC	Iceland	NA
					No EKC	Ireland	NA
					Inverted U-shaped	Italy	11,362.86
					No EKC	Luxembourg	NA
					No EKC	Netherlands	NA
					No EKC	Norway	NA
					No EKC	Portugal	NA

					No EKC	Spain	NA
					No EKC	Sweden	NA
					No EKC	Switzerland	NA
					No EKC	UK	NA
Apergis and Payne (2010)	11 Commonwealth countries (1992-	Quadratic	Panel	FMOLS	Inverted U-shaped	Without Russia	1.69
	2004)					With Russia	1.71
Bello and Abimbola (2010)	Nigeria (1980-2008)	Quadratic	Time Series	FMOLS	No EKC	NA	
Fodha and Zaghdoud (2010)	Tunisia (1961-2004)	Cubic	Time Series	Cointegration	N-Shaped	a. 600.33 b. 765.79	
					No EKC	Model I	NA
					No EKC	Model II	NA
Us and Dishard (2010)	Canada (1048-2002)	Cubic	Time Series	OLS	No EKC	Model III	NA
He and Richard (2010)	Canada (1948-2002)	Cubic	Time Series	OLS	No EKC	Model VI	NA
					No EKC	Model V	NA
					No EKC	Model VI	NA
						Model I	21,187.96
wata et al. (2010)	France (1960-2003)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	Model II	20,620.03
					*	Model III	21,097.22
					No EKC	Malaysia	NA
					No EKC	Singapore	NA
	5 ASEAN countries		Time Series	DOLG	Monotonically Increasing	Indonesia	NA
Lean and Smyth (2010)	(1980-2006)	Quadratic		DOLS	Inverted U-shaped	Philippines	1,480.01
					No EKC	Thailand	NA
			Panel		Inverted U-shaped	2,197.32	
		Cubic			No EKC	Canada	NA
		Cubic			N-shaped	France	a. 15,723.24 b. 24,832.32
		Cubic			N-shaped	Germany	a. 16,548.13 b. 25,797.54
		Cubic	_1		No EKC	Italy	NA
(act and N = 1) (2010)	G8 and +5 countries	Cubic	Time C i	OL S	No EKC	Japan	NA
Lipford and Yandle (2010)	(1950-2004)	Linear	— Time Series	OLS	Monotonically Increasing	Russia	NA
(1950-2004)		Cubic			N-shaped	UK	a. 13,613.37 b. 23,682.67
		Cubic			No EKC	US	NA
		Linear			Monotonically Increasing	Brazil	NA
		Cubic	-1		No EKC	China	NA
		Linear			Monotonically Increasing	India	NA

		Quadratic			U-shaped	Mexico	2,356.78
		Quadratic			U-shaped	South Africa	3,105.31
					Inverted U-shaped	Full sample	208,981.29
					Inverted U-shaped	G7	17,001.75
					Inverted U-shaped	EU15	14,870.62
		Quadratic			Inverted U-shaped	OECD	19,930.37
					U-shaped	Non-OECD	37.52
					U-shaped	40 Poorest	54.60
					Inverted U-shaped	Umbrella	54,671.12
					Inverted N-shaped	Full sample	a. 144.76 b. Extremely large
Musolesi et al. (2010)	109 countries (1959- 2001)		Panel	Bayesian estimation	N-shaped	G7	a. 19,224.59 b. 22,026.47
					N-shaped	EU15	a. 17,692.21 b. 32,534.63
		Cubic			N-shaped	OECD	a. 13,178.92 b. Extremely large
					Inverted N-shaped	Non-OECD	a. 186.72 b. Extremely large
					No EKC	40 Poorest	NA
					Inverted N-shaped	Umbrella	a. 167.04 b. 170,832.21
					No EKC	Brazil	NA
					U-shaped	Russia	2,394.65
	BRIC countries		Time Series	Panel	Inverted U-shaped	India	427.80
Pao and Tsai (2010)	(1971-2005)	Quadratic		cointegration	Inverted U-shaped	China	605.34
				Ũ	Inverted U-shaped	BRIC	219.83
			Panel		Inverted U-shaped	BIC	304.35
Seetanah and Vinesh (2010)	Mauritius (1975- 2009)	Quadratic	Time Series	OLS	Monotonically Increasing	NA	·
					No EKC	Model I	NA
					Monotonically Increasing	Model II	NA
	24 to a maint				Monotonically Increasing	Model III	NA
Tomogian and $\mathbf{D} = (2010)$	24 transition	Ou advati -	Domal	Sustan CMM	Monotonically Increasing	Model IV	NA
Tamazian and Rao (2010)	economies (1993-	Quadratic	Panel	System GMM	Monotonically Increasing	Model V	NA
	2004)				Monotonically Increasing	Model VI	NA
					Monotonically Increasing	Model VII	NA
					No EKC	Model VIII	NA
Chuku (2011)	Nigeria (1960-2008)	Cubic	Time Series	Cointegration	Inverted U-shaped	Standard Model	280.84

					N-shaped	Nested Model	a. 237.23 b. 583.33
					Inverted U-shaped	All	59,874
C 1D (2011)	27 Chinese provinces		D 1		Inverted U-shaped	Eastern	73,130
Guangyue and Deyong (2011)	(1990-2007)	Quadratic	Panel	Cointegration	Inverted U-shaped	Central	54,176
					U-shaped	Western	6,002
	00 (1000			MG	No EKC	NA	
Iwata et al. (2011)	28 countries (1960-	Quadratic	Panel	PMG	Inverted U-shaped	77,126.73	
	2003)	-		Panel regression	Inverted U-shaped	141,682.59	
		T :				Model I	NA
$\mathbf{L}_{1} = \mathbf{L}_{1} = $	$O_{\rm high} (1052, 2000)$	Linear	Time Contra	ARDL bounds	Monotonically Increasing	Model II	NA
Jalil and Feridun (2011)	China (1953-2006)	Or a duration	— Time Series	AKDL bounds	Turne at a d TT also and	Model III	24.59
		Quadratic			Inverted U-shaped	Model IV	27.50
L-h-++++-1 (2011)	55 countries (1970-	Or a duration	Dem al	OL S	Turne et al II als an al	Model I	10.33
Jobert et al. (2011)	2008)	Quadratic	Panel	OLS	Inverted U-shaped	Model II	13.54
Nasir and Rehman (2011)	Pakistan (1972-2008)	Quadratic	Time Series	Cointegration	Inverted U-shaped	624.84	
		-			No EKC	Model I	NA
Pao and Tsai (2011a)	Brazil (1980-2007)	Quadratic	Time Series	Cointegration	Inverted U-shaped	Model II	1,489.08
		-		-	No EKC	Model III	NA
Pao and Tsai (2011b)	BRIC countries (1980-2007)	Quadratic	Panel	Panel Cointegration	Inverted U-shaped	281.01	·
					No EKC	Model I	NA
					Monotonically Increasing	Model II	NA
Pao et al. (2011)	Russia (1990-2007)	Quadratic	Time Series	Cointegration	No EKC	Model III	NA
		-		-	Monotonically Decreasing	Model IV	NA
					U-shaped	Model V	496.42
Wang et al. (2011)	28 Chinese Provinces (1995-2007)	Quadratic	Panel	Panel Cointegration	U-shaped	3,287	
Ahmed and Long (2012)	Pakistan (1971-2008)	Cubic	Time Series	ARDL bounds	Monotonically Decreasing	NA	
					Inverted U-shaped	Algeria	
					Inverted U-shaped	Egypt	6,514.00
					Inverted U-shaped	Jordan	3,706.00
					Inverted U-shaped	Lebanon	2.801.00
Arouri et al. (2012)	12 MENA countries	Quadratic	Time Series	CCE	U-shaped	Morocco	1413.53
	(1981-2005)	Quadratic	Time Series	LUE	Monotonically Increasing	Tunisia	NA
					Inverted U-shaped	Bahrain	1,984.00
					Inverted U-shaped	Kuwait	2,697.00
					U-shaped	UAE	2977.36
					Inverted U-shaped	Oman	1,840.00

					Inverted U-shaped	Qatar	3,593.00
					Inverted U-shaped	Saudi Arabia	1,168.00
			Panel		Inverted U-shaped	37,263.00	
$A_{achari}(2012)$	Iran (1980-2008)	Cubic	Time Series	2SLS	II shamad	With Openness	2,655.08
Asghari (2012)	Iran (1980-2008)	Cubic	Time Series	2515	U-shaped	With FDI	3,049.11
				Panel regression	Monotonically Increasing	Model I	NA
				Panel regression	Monotonically Increasing	Model II	NA
				Panel regression	Inverted U-shaped	Model III	Extremely large
	29 Chinese Provinces			Panel regression	Inverted U-shaped	Model IV	Extremely large
Du et al. (2012)	(1995-2009)	Quadratic	Panel	Panel regression	Inverted U-shaped	Model V	Extremely large
	(1995-2009)	_		System GMM	Monotonically Increasing	Model VI	NA
				System GMM	No EKC	Model VII	NA
				LSDVC	Inverted U-shaped	Model VIII	Extremely large
				LSDVC	No EKC	Model IX	NA
Esteve and Tamarit (2012a)	Spain (1857-2007)	Linear	Time Series	Cointegration with structural	No EKC	NA	•
Esteve and Tamarit (2012a)	Span (1057-2007)	Linear		breaks	NO LIKE		
Esteve and Tamarit (2012b)	Spain (1857-2007)	Quadratic	Time Series	Threshold Cointegration	Inverted U-shaped	13,246.99 14,685.19	
				Connegration		Without Energy	a. 9,565.58
						Price	b. 18,943.66
Fosten et al. (2012)	The UK (1830-2003)	Cubic	Time Series	OLS	N-shaped	With Energy	a. 13,678.16
						Price	b. 23,124.25
Hossain (2012)	Japan (1960-2009)	Cubic	Time Series	ARDL bounds	No EKC	NA	
Hussain et al. (2012)	Pakistan (1971-2006)	Cubic	Time Series	OLS	Monotonically Increasing	NA	
	India and China	<u> </u>				China	417.06
Jayanthakumaran et al. (2012)	(1971-2007)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	India	367.05
Saboori et al. (2012a)	Malaysia (1980- 2009)	Quadratic	Time Series	Cointegration	Inverted U-shaped	4,789.70	·
Saboori et al. (2012b)	Indonesia (1971- 2007)	Quadratic	Time Series	ARDL bounds	U-shaped	774.89	
Shahbaz et al. (2012)	Pakistan (1971-2009)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	Extremely large	
Wang (2012)	98 countries (1971- 2007)	Quadratic	Panel	FMOLS	Monotonically Increasing	NA	
Abdallah et al. (2013)	Tunisia (1980-2010)	Cubic	Time Series	VECM	Inverted N-shaped	a. 74.88 b. 578.82	
		Quadratic			U-shaped	Model 1	120.76
Abdou and Atya (2013)	Egypt (1961-2008)		Time Series	VECM	U-shaped	Model 2	401.19
		Cubic			U-shaped	Model 3	384.76

					N 1 1	N 114	a. 653.37
					N-shaped	Model 4	b. 1,862.33
						Developed	14,890.68
	40 countries (1961-		D 1	D 1 ·		countries	67,846.30
Al Sayed and Sek (2013)	2009)	Quadratic	Panel	Panel regression	Inverted U-shaped	Developing	3,719.81
	,					countries	8,673.26
Baek and Kim (2013)	Korea (1975-2006)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	Case I Case II	Extremely large
					Monotonically Increasing	Indonesia	NA
	5 AGE AND A			T 1	U-shaped	Malaysia	232.00
Chandran and Tang (2013)	5 ASEAN countries	Quadratic	Time Series	Johansen	No EKC	Singapore	NA
	(1971-2008)			cointegration	U-shaped	Thailand	188.53
					No EKC	Philippines	NA
					U-shaped	Base model	209.43
Kanjilal and Ghosh (2013)	India (1971-2008)	Quadratic	Time Series	Threshold	Inverted U-shaped	Subsample 1	212.05
3				cointegration	No EKC	Subsample 2	NA
Kohler (2013)	South Africa (1960- 2009)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	7.39	
Mehrara and ali Rezaei (2013)	BRICS countries (1960-1996)	Quadratic	Panel	Kao Panel cointegration	Inverted U-shaped	5,269.38	
				0	U-shaped	Bahrain	11.84
					Inverted U-shaped	UAE	10.50
					No EKC	Iran	NA
					No EKC	Israel	NA
					Inverted U-shaped	Egypt	7.91
			T. C.		U-shaped	Syria	6.72
Ozcan (2013)	12 MENA countries	Quadratic	Time Series	FMOLS	No EKC	Saudi Arabia	NA
	(1990-2008)				U-shaped	Turkey	8.47
					U-shaped	Oman	8.45
					No EKC	Jordan	NA
					Inverted U-shaped	Lebanon	10.73
					U-shaped	Yemen	11.93
			Panel		U-shaped	8.24	
Ozturk and Acaravci (2013)	Turkey (1960-2007)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	5,190.83	
					U-shaped	Indonesia	657.82
					Inverted U-shaped	Malaysia	116.27
Saboori and Sulaiman (2013a)	5 ASEAN countries	Quadratic	Time Series	ARDL bounds	U-shaped	Philippines	1,215.62
	(1971-2009)				Inverted U-shaped	Singapore	5,731.08
					Inverted U-shaped	Thailand	1,752.81

					No EKC	Energy	NA
	M 1 . (1000				Inverted U-shaped	Coal	5,214.23
Saboori and Sulaiman (2013b)	Malaysia (1980- 2009)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	Gas	5,988.87
	2009)				Inverted U-shaped	Electricity	8,288.94
					Inverted U-shaped	Oil	5,851.41
Shahbaz (2013)	Pakistan (1971-2009)	Linear	Time Series	ARDL bounds	No EKC	NA	
Shandaz (2013)	Pakistan (1971-2009)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	28,523.84	
	Daman'a (1000					197.25	
Shahbaz et al. (2013a)	Romania (1980- 2010)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	201.63	
	2010)	-			-	105.48	
Shahbaz et al. (2013b)	Turkey (1970-2010)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	4,797.18	
Shahhar at al. $(2012a)$	South Africa (1965-	Linear	Time Series	ADDI hounda	Monotonically Increasing	NA	
Shahbaz et al. (2013c)	2008)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	3,463	
Sulaiman et al. (2013)	Malaysia (1980- 2009)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	8.77	
Taguchi (2013) 19 (19)	19 Asian countries (1950-2009)	Quadratic	Panel	System GMM	Inverted U-shaped	51,102.94	
Tiwari et al. (2013)	India (1966-2009)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	26,517.29	
Arouri et al. (2014)	Thailand (1971- 2010)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	138,220.36	
Azlina et al. (2014)	Malaysia (1975- 2011)	Quadratic	Time Series	OLS	Monotonically Increasing	NA	
Bölük and Mert (2014)	16 EU countries (1990-2008)	Quadratic	Panel	Panel regression	Inverted U-shaped	5,549.02	
Boutabba (2014)	India (1971-2008)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	19,370.36	
	· · · · · · · · · · · · · · · · · · ·				Inverted U-shaped	Australia	77.13
					U-shaped	Austria	81.02
					U-shaped	Canada	79.11
					Inverted U-shaped	Denmark	74.91
					U-shaped	Finland	109.50
					No EKC	France	NA
$C_{1} = -4 = 1$ (2014)	22 OECD countries	Orre duration	Time Series	FMOLS	Inverted U-shaped	Germany	52.66
Cho et al. (2014)	(1971-2000)	Quadratic	Time Series	FMOLS	Inverted U-shaped	Greece	52.57
					U-shaped	Hungary	40.72
					No EKC	Iceland	NA
					Inverted U-shaped	Ireland	40.14
					Inverted U-shaped	Italy	62.54
					No EKC	Japan	NA
					No EKC	Netherlands	NA

					No EKC	New Zealand	NA
					No EKC	Norway	NA
					No EKC	Portugal	NA
					U-shaped	Spain	68.80
					U-shaped	Sweden	86.86
					Inverted U-shaped	Turkey	28.27
					No EKC	UK	NA
					U-shaped	US	85.47
			Panel		Inverted U-shaped	60.87	•
						296.02	
	10 MENA countries			FMOLS	T / 1TT 1 1	34.03	
Farhani and Shahbaz (2014)	(1980-2009)	Quadratic	Panel	DOLG	- Inverted U-shaped	377.55	
				DOLS		36.81	
Farhani et al. (2014a)	Tunisia (1971-2008)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	4,377.35	
	10 MENA countries		D 1	FMOLS		31,929.55	
Farhani et al. (2014b)	(1990-2010)	Quadratic	Panel	DOLS	Inverted U-shaped	33,024.34	
					Inverted U-shaped	Congo Republic	1,080.43
	6 Sub-Saharan				Inverted U-shaped	DRC	462.18
Kivyiro and Arminen (2014)	countries (1971-	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	Kenya	406.67
	2010)				No EKC	South Africa	NA
	,				No EKC	Zambia	NA
					No EKC	Zimbabwe	NA
					Inverted U-shaped	Between 9,517.0)2 and 83,973.75
	27 EU countries		T' C '	01.0	U-shaped	Between 2,239.3	3 and 6,382.01
Lapinskienė et al. (2014)	(1995-2010)	Cubic	Time Series	OLS	Monotonically Increasing Monotonically Increasing	NA	
Lau et al. (2014)	Malaysia (1970- 2008)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	11,018.40	
					N-Shaped	a. 45.43 b. 25.05	
				Random Effect	U-Shaped	8.11	
	EU-27 countries	~			N-Shaped	a. 64.68 b. 31.47	
López-Menéndez et al. (2014)	(1996-2010)	Cubic	Panel		Monotonically Decreasing	NA	
	(Fixed Effect	U-Shaped	9.62	
				Fixed Effect	Monotonically Increasing	NA	
				Fixed & Time	No EKC	NA	
				Effect	U-Shaped	2.77	

					Inverted U-shaped	Brazil	22.08
					Inverted U-shaped	China	17.05
					Inverted U-shaped	Egypt	16.59
					Inverted U-shaped	Japan	10.26
Onafowora and Owoye (2014)	8 countries (1971- 2010)	Cubic	Time Series	ARDL bounds	Inverted N-shaped	South Korea	a. 9.12 b. Extremely Large
					Inverted U-shaped	Mexico	21.34
					Inverted U-shaped	Nigeria	32.86
					Inverted U-shaped	South Africa	22.96
					Inverted U-shaped	Oil Producing	2,147.45
Osabuohien et al. (2014)	50 African countries (1995-2010)	Quadratic	Panel	PDOLS	No EKC	Non-oil Producing	NA
	15 West African			Pooled OLS	No EKC	NA	
Oshin and Ogundipe (2014)	countries (1980-	Quadratic	Panel	Fixed Effect	Inverted U-shaped	1,041.68	
	2012)			Random Effect	Monotonically Decreasing	NA	
afiei and Salim (2014) 29 OECD countrie (1980-2011)	29 OECD countries (1980-2011)	Quadratic	Panel	AMG	Monotonically Increasing	NA	
Shahbaz et al. (2014a)		Quadratic	Time Series	ARDL bounds	Inverted U-shaped	1,740.56	
Shahbaz et al. (2014b)	The UAE (1975- 2011)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	262,158.14	
	,			EMOLG		1960-1978	2,547.64
X (2014)	T 1 (10(0.0007)		T' C '	FMOLS	T (1TT 1 1	1979-2007	3,849.94
Yavuz (2014)	Turkey (1960-2007)	Quadratic	Time Series	01.0	Inverted U-shaped	1960-1978	2,453.24
				OLS		1979-2007	4,958.79
					Inverted U-shaped	All	26,595.74
		Quadratic			Monotonically Increasing	High Income	NA
		-			Inverted U-shaped	Low Income	4,255.32
Akpan and Abang (2015)	47 countries (1970- 2008)		Panel	GLS	N-shaped	All	a. 30,650.45 b. 20,391.22
		Cubic			N-shaped	High Income	a. 29,339.03 b. 24,212.89
					No EKC	Low Income	NA
Alshehry (2015)	Saudi Arabia (1970- 2010)	Cubic	Time Series	OLS	N-shaped	a. 18,121.94 b. 13,528.31	
	,			FMOLS	Inverted U-shaped	10,207.40	
	14 Asian countries		_	DOLS	Inverted U-shaped	10,841.80	
Apergis and Ozturk (2015)	(1990-2011)	Quadratic	Panel	PMGE	Inverted U-shaped	10,511.20	
	Ì Í			MG	Inverted U-shaped	11,695.60	

				FMOLS	No EKC	NA	
		C 1 '		DOLS	No EKC	NA	
		Cubic		PMGE	No EKC	NA	
				MG	No EKC	NA	
					Monotonically Increasing	Canada	NA
					Monotonically Decreasing	Denmark	NA
					No EKC	Finland	NA
		Linear			No EKC	Iceland	NA
					No EKC	Norway	NA
					No EKC	Sweden	NA
					Monotonically Decreasing	US	NA
					No EKC	Canada	NA
					Monotonically Decreasing	Denmark	NA
					No EKC	Finland	NA
D_{-1} (2015)	7 Arctic countries (1960-2010)	Quadratic	Time Caria	Series ARDL bounds Inverted U-shaped U-shaped No EKC U-shaped	Inverted U-shaped	Iceland	2.31
Baek (2015)			Time Series		U-shaped	Norway	1.22
					Sweden	NA	
					U-shaped	US	4.24
		Cubic			Monotonically Decreasing	Canada	NA
					Monotonically Decreasing	Denmark	NA
					Monotonically Decreasing	Finland	NA
					No EKC	Iceland	NA
					No EKC	Norway	NA
					N-shaped	Sweden	a. 3.62 b. 1.57
					No EKC	US	NA
				Panel EGLS		Model 1	a. 13,804.32 b. 54,882.55
Balsalobre et al. (2015)	28 OECD countries (1994-2010)	Cubic	Panel		N-shaped	Model 2	a. 15,890.49 b. 72,697.08
						Model 3	a. 16,226.77 b. 71,007.27
$\mathbf{D}_{\mathbf{r}}$ and $\mathbf{r}_{\mathbf{r}}$ (2015)	Malaysia (1970-		Time Ceri	ARDL bounds	Monotonically Increasing	NA	
Begum et al. (2015)	1980)	Quadratic	Time Series	DOLS	U-shaped	8.78K	
Bölük and Mert (2015)	Turkey (1961-2010)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	Extremely large	
Dogan et al. (2015)	27 OECD countries (1995-2010)	Quadratic	Panel	DOLS	U-shaped	206,249.55	
Farhani and Ozturk (2015)	Tunisia (1971-2012)	Quadratic	Time Series	ARDL bounds	Monotonically Increasing	NA	
Heidari et al. (2015)	5 ASEAN countries	Quadratic	Panel	PSTR	Inverted U-shaped	4,686	

					No EKC		NA
					No EKC	All countries	NA
					No EKC		NA
					Inverted U-shaped	A 11	6,572.34
Ibrahim and Rizvi (2015)	8 Asian countries	Quadratic	Panel	DOLS	Inverted U-shaped		6,617.04
× ,	(1971-2009)				Inverted U-shaped	č	6,489.92
					Inverted U-shaped	ACEAN	1,193.33
					Inverted U-shaped		1,190.49
					Inverted U-shaped	countries	1,663.64
	T		T ' C '		Î. Î.	All countries without China ASEAN countries 2,878.69 3,259.37 244.65 157.68 272.81 159.82 3,630.71 3,728.68 Whole China Eastern China Eastern China Central China Western China a. 1,036.84 b. 4,020.42 Extremely large 4,725.39 Benin Botswana Cameroon Congo Republic Ethiopia Gabon Ghana Kenya Nigeria Senegal	,
Jebli and Youssef (2015)	Tunisia (1980-2009)	Quadratic	Time Series	ARDL bounds	U-shaped	3,259.37	
				01.0		244.65	
	24 Sub-Saharan		D 1	OLS		157.68	
Jebli et al. (2015)	Africa countries	Quadratic	Panel	EN LOL G	- U-shaped		
	(1980-2010)			FMOLS		159.82	
Kasman and Duman (2015)	15 EU Member countries (1992-		Panel FM	FMOLS			
Kasman and Duman (2015)	2010)	Quadratic	Pallel	FMOLS	Inverted U-shaped	All countries without ChinaASEAN countries2,878.693,259.37244.65157.68272.81159.823,630.713,728.68Whole ChinaEastern ChinaCentral ChinaWestern Chinaa. 1,036.84b. 4,020.42Extremely large4,725.39BeninBotswanaCameroonCongo RepublicEthiopiaGabonGhanaKenyaNigeriaSenegalSouth Africa	
	30 Chinese Provinces	Quadratic		Pooled OLS	No EKC	Whole China	NA
Liu et al. (2015)			Panel		No EKC	Eastern China	NA
Liu et al. (2013)	(1990-2012)	Quadratic	Fallel	Pooled OLS	U-shaped	Central China	1,183.93
					U-shaped	All countriesAll countrieswithout ChinaASEANcountries2,878.693,259.37244.65157.68272.81159.823,630.713,728.68Whole ChinaEastern ChinaCentral ChinaWestern Chinaa. 1,036.84b. 4,020.42Extremely large4,725.39BeninBotswanaCameroonCongo RepublicEthiopiaGabonGhanaKenyaNigeriaSenegalSouth Africa	204.51
Nasr et al. (2015)	South Africa (1911- 2010)	Cubic	Time Series	Co-summability	Inverted N-shaped		
Ozturk and Al-Mulali (2015)	Cambodia (1996- 2012)	Quadratic	Time Series	2SLS System GMM	- U-shaped	Extremely large	
Seker et al. (2015)	Turkey (1974-2010)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	4,725,39	
					Monotonically Increasing	,	NA
					Monotonically Increasing	Botswana	NA
					U-shaped		1,195.50
					Inverted U-shaped		3,213.85
					Inverted U-shaped		851.74
	13 African countries			Johansen Cointegration	No EKC		NA
Shahbaz et al. (2015)	(1980-2012)	Quadratic	Time Series		No EKC		NA
	(6	No EKC		NA
					U-shaped		518.09
					U-shaped	<u> </u>	1,118.07
					Inverted U-shaped	U	2.42
					Inverted U-shaped	Togo	1,045.87

				No EKC	Zambia	NA
Vietnam (1976-2009)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	Extremely large	•
	Linear		Monotonically Increasing	NA		
					6,300	
Tuelton (1069, 2007)	Quadratia	Times Comias	Cointegration	Invented II showed	6,449	
Turkey (1908-2007)	Quadratic	Time Series	Cointegration	Inverted U-shaped		
					6,053	
	Cubic			No EKC	NA	
30 Chinese Provinces (2000-2012)	Linear	Panel	Nonparametric additive regression	Inverted U-shaped	Not specified	
				Inverted N-shaped	World	a. 182.59 b. 17,554.97
			Inverted N-shaped	Inverted N-shaped	OECD	a. 299.57 b. 24,398.62
154 countries (1960- 2007)			Quantila	Inverted N-shaped	Non-OECD	a. 113.87 b. 35,611.87
	Cubic	Panel	regression	Inverted N-shaped	West	a. 495.32 b. 18,344.92
					East Europe	NA
				No EKC	Latin America	NA
				Monotonically Decreasing	East Asia	NA
				No EKC	West Asia	NA
				Monotonically Decreasing	Africa	NA
India (1971-2014)		Time Series	ARDL bounds	Inverted U-shaped		
					1,157.78	
	Quadratic				1,010.78	
					786.70	
					863.19	
27 countries (1990- 2012)	Quadratic	Panel	FMOLS	Inverted U-shaped	Extremely Large	
Spain (1874-2011)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped		
17 OECD countries (1977-2010)	Quadratic	Panel	FMOLS DOLS	Inverted U-shaped	85,574.52	
BRICS countries			GMM	U-shaped	3,158.15	
(1997-2011)	Quadratic	Panel	Panel Regression	Inverted U-shaped	4,822.33	
10 CEECs (1991-	Quadratic	Panel	FMOLS	Inverted U-shaped	6,609.56	
	Quadratic	Panel	FMOLS	Inverted U-shaped	25.40	
	Turkey (1968-2007) 30 Chinese Provinces (2000-2012) 154 countries (1960-2007) India (1971-2014) 27 countries (1990-2012) Spain (1874-2011) 17 OECD countries (1977-2010) BRICS countries (1997-2011)	LinearTurkey (1968-2007)Quadratic30 Chinese Provinces (2000-2012)Linear30 Chinese Provinces (2000-2012)Linear154 countries (1960- 2007)Cubic154 countries (1960- 2007)CubicIndia (1971-2014)QuadraticIndia (1971-2014)Quadratic27 countries (1990- 2012)QuadraticSpain (1874-2011)Quadratic17 OECD countries (1977-2010)QuadraticBRICS countries (1997-2011)Quadratic10 CEECs (1991- 2011)Quadratic	LinearTurkey (1968-2007)QuadraticTime Series30 Chinese Provinces (2000-2012)LinearPanel30 Chinese Provinces (2000-2012)LinearPanel154 countries (1960- 2007)CubicPanel154 countries (1960- 2007)CubicPanel154 countries (1960- 2007)QuadraticPanelIndia (1971-2014)QuadraticTime Series27 countries (1990- 2012)QuadraticPanel27 countries (1990- 2012)QuadraticPanel17 OECD countries (1977-2010)QuadraticPanelBRICS countries (1997-2011)QuadraticPanel10 CEECs (1991- 	LinearLinearTurkey (1968-2007)QuadraticTime SeriesCointegration30 Chinese Provinces (2000-2012)LinearPanelNonparametric additive regression30 Chinese Provinces (2000-2012)LinearPanelQuantile regression154 countries (1960- 2007)CubicPanelQuantile regression154 countries (1960- 2007)CubicPanelQuantile regressionIndia (1971-2014)QuadraticTime SeriesARDL bounds27 countries (1990- 2012)QuadraticPanelFMOLS27 countries (1990- 2012)QuadraticTime SeriesARDL bounds17 OECD countries (1977-2010)QuadraticPanelFMOLSBRICS countries (1997-2011)QuadraticPanelGMM Panel Regression10 CEECs (1991- 2011)QuadraticPanelFMOLS DOLS10 CEECs (1991- 2011)QuadraticPanelFMOLS DOLS	Vietnam (1976-2009) Quadratic Time Series ARDL bounds Inverted U-shaped Turkey (1968-2007) Quadratic Time Series Cointegration Inverted U-shaped Turkey (1968-2007) Quadratic Time Series Cointegration Inverted U-shaped 30 Chinese Provinces (2000-2012) Linear Panel Nonparametric additive regression Inverted U-shaped 154 countries (1960- 2007) Cubic Panel Quantile regression Inverted N-shaped Inverted N-shaped Inverted N-shaped Inverted N-shaped Inverted N-shaped 154 countries (1960- 2007) Cubic Panel Quantile regression Inverted N-shaped Inverted N-shaped Inverted N-shaped Inverted N-shaped No EKC No EKC No EKC No EKC No EKC No EKC No EKC No E	Vietnam (1976-2009) Quadratic Time Series ARDL bounds Inverted U-shaped Extremely large Turkey (1968-2007) Quadratic Time Series Cointegration Inverted U-shaped NA 30 Chinese Provinces (2000-2012) Linear Panel Nonparametric additive regression Inverted U-shaped No EKC NA 30 Chinese Provinces (2000-2012) Linear Panel Nonparametric additive regression Inverted U-shaped Not specified 154 countries (1960- 2007) Cubic Panel Quantile regression Inverted N-shaped World Inverted N-shaped OECD Inverted N-shaped West No EKC East Europe No EKC No EKC East Europe No EKC No EKC East Asia No EKC No EKC West Asia No EKC No EKC West Asia No EKC 1.161.52 1.115.73 India (1971-2014) Quadratic Time Series ARDL bounds Inverted U-shaped Est Fasia Bain (1874-2011) Linear 1.61.52 1.010.78 Time Series ARDL bounds Inverted U-shaped 85.574.52 2012)

						32.00	
	23 countries (1985- 2011)					31.88	
						30.88	
				DOLS		35.33	
						28.80	
Dogan and Turkekul (2016)	The US (1960-2010)	Quadratic	Time Series	ARDL bounds	U-shaped	126.58	
		Cubic			Monotonically Increasing	Production based	NA
		Quadratic			Inverted U-shaped		155,140.19
		Linear		OLS	Monotonically Increasing	accounting	NA
		Cubic		OLS	Monotonically Increasing	Communitien	NA
		Quadratic			Inverted U-shaped	Consumption based accounting	146,956.52
		Linear			Monotonically Increasing	based accounting	NA
		Cubic			N-shaped	Production based	a. 36,419.22 b. 74,042.12
		Quadratic			Monotonically Increasing	accounting Consumption based accounting Production based	NA
		Linear			Monotonically Increasing		NA
		Cubic		Monotonically Increasing	Consumption	NA	
		Quadratic			Monotonically Increasing		NA
		Linear			Monotonically Increasing		NA
		Cubic		N-shaped	N-shaped	Production based accounting	a. 42,059.96 b. 72,300.01
	100 (1000	Quadratic			Inverted U-shaped		132,701.42
Dong et al. (2016)	189 countries (1990-	Linear	Panel	Random effect	Monotonically Increasing		NA
-	2012)	Cubic			No EKC	Consumption	NA
		Quadratic			Monotonically Increasing	based accounting	NA
		Linear			Monotonically Increasing	based accounting	NA
		Cubic	ubic No EKC		Production based	NA	
		Quadratic	_	Inverted U-shaped	1	accounting (All	112,612.61
		Linear		GMM	Monotonically Increasing	countries)	NA
		Cubic		Givitvi	Monotonically Increasing	Consumption based accounting (All countries)	NA
		Quadratic	_		Inverted U-shaped		179,321.49
		Linear			Monotonically Increasing		NA
		Cubic N-shape	N-shaped	Production based	a. 38,288.89 b. 80,076.89		
		Quadratic			No EKC	accounting (High	NA
		Linear		GMM	Monotonically Increasing	- income)	NA
		Cubic			Monotonically Decreasing	Consumption	NA
		Quadratic			Monotonically Increasing	based accounting	NA
		Linear			Monotonically Increasing	(High income)	NA

		~					a. 7,506.39
		Cubic		GMM	Inverted N-shaped	Production based	b. 20,199.24
		Quadratic	-		Monotonically Decreasing	- accounting (Middle income)	NA
		Linear	-		Monotonically Increasing		NA
		Cubic			No EKC	Consumption	NA
		Quadratic		U-shaped		6,957.55	
		Linear			Monotonically Increasing	(Middle income)	NA
		Cubic			No EKC	Production based	NA
		Quadratic			Inverted U-shaped	accounting (Low	2,257.63
		Linear		CNAL	No EKC	income)	NA
		Cubic		GMM	No EKC	Consumption	NA
		Quadratic			Monotonically Increasing	based accounting	NA
		Linear		CMG Mor	No EKC	(Low income)	NA
		Quadratic			Monotonically Increasing		NA
		Linear		CMG	Monotonically Increasing	Production based accounting	NA
		Quadratic		AMG	Inverted U-shaped		13,645.83
		Linear			Monotonically Increasing		NA
		Quadratic		CMG	Monotonically Increasing		NA
		Linear		CMO	Monotonically Increasing	Consumption	NA
		Quadratic		AMG	Monotonically Increasing	based accounting	NA
		Linear		AWO	Monotonically Increasing		NA
					No EKC	Malaysia	NA
					No EKC	Thailand	NA
					Inverted U-shaped	Turkey	6,863.63
	10 Developing				Inverted U-shaped	India	313.98
Ertugrul et al. (2016)	countries (1971-	Quadratic	Time Series	ARDL bounds	No EKC		NA
Litugiui et al. (2010)	2011)	Quadratic	Time Series	ARDL bounds	No EKC	(Middle income) Consumption based accounting (Middle income) Production based accounting (Low income) Consumption based accounting (Low income) Production based accounting (Low income) Production based accounting Consumption based accounting Consumption based accounting Consumption based accounting Malaysia Thailand Turkey India Brazil South Africa Mexico China Indonesia Korea 72,264.18 59,010.76 12,008.06 4,094.98 NA 18,661.36	NA
	2011)				No EKC		NA
					Inverted U-shaped		2,527.41
					Monotonically Increasing		NA
					Inverted U-shaped		1,665.11
Jebli et al. (2016)	25 OECD countries	Quadratic	Panel	FMOLS	Inverted U-shaped		
Jeon et al. (2010)	(1980-2010)	Zuaurane		DOLS	Inverteu O-snapeu	(Middle income) Consumption based accounting (Middle income) Production based accounting (Low income) Consumption based accounting (Low income) Production based accounting Output Production based accounting Output Production based accounting Output Production based accounting Malaysia Thailand Turkey India Brazil South Africa Mexico China Indonesia Korea 72,264.18 59,010.76 12,008.06 4,094.98 NA	
				PMG	Inverted U-shaped		
	28 Chinese Provinces				Ĩ		
Li et al. (2016)	(1996-2012)	Quadratic	Panel	MG	No EKC	Consumption based accounting (Middle income) Production based accounting (Low income) Consumption based accounting (Low income) Production based accounting Consumption based accounting Consumption based accounting Malaysia Thailand Turkey India Brazil South Africa Mexico China Indonesia Korea 72,264.18 59,010.76 12,008.06 4,094.98 NA	
	(1))0 2012)			DFE	Inverted U-shaped		
					Inverteu O-snapeu	7,563.09	

				GMM	Inverted U-shaped	Between 3,267.68 a	
Lorente and Álvarez-Herranz (2016)	17 OECD countries (1990-2012)		Panel	Fixed effect		With energy regulation	a. 21,917.18 b. 69,282.09
		Cubic		2SLS	N-shaped	Without dampening effect With dampening	a. 24,497.41 b. 55,370.58 a. 21,917.18
				PLS	-	effect With AR(1)	b. 69,282.09 a. 22,193.98 b. 64.426.71
Sephton and Mann (2016)	The UK (1830-2003)	Quadratic	Time Series	OLS	Inverted U-shaped	correction 9,052.67	b. 64,426.71
Shahbaz et al. (2016a)	Australia (1970- 2012)	Cubic	Time Series	ARDL bounds	Monotonically Decreasing	NA	
Shahbaz et al. (2016b)	N11 countries (1972-	Quadratic	Panel	OLS	Inverted U-shaped	Pakistan	5,267.95 3,218.78
Shahbaz et al. (20100)	2013)	Quadratic	r allei	OLS	Inverteu O-snapeu	Turkey	16,945.73 5,275.43
Sinha and Sen (2016)	BRIC countries (1980-2013)	Quadratic	Panel	System GMM	Inverted U-shaped	Extremely Large	
Sugiawan and Managi (2016)	Indonesia (1971- 2010)	Linear Quadratic	Time Series	ARDL bounds	Monotonically Increasing Inverted U-shaped	NA 7,729.24	
Xu and Lin (2016)	30 Chinese Provinces (2000-2013)	Linear	Panel	Nonparametric additive regression	Inverted U-shaped	Not specified	
Zambrano-Monserrate et al. (2016)	Brazil (1971-2011)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	2,240.06	
Ahmad et al. (2017)	Croatia (1992-2011)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	48.68K	
Álvarez-Herránz et al. (2017)	28 OECD countries (1990-2014)	Cubic	Panel	Panel Regression	N-shaped	a. 20,885.38 b. 67,309.06	
Apergis et al. (2017)	48 US States (1960- 2010)	Quadratic	Panel	MG MG-FMOLS MG-DOLS CCE-MG CupBC	Inverted U-shaped	2.26 2.26 2.26 2.51 2.23 2.21	
Gill et al. (2017)	Malaysia (1970- 2011)	Quadratic	Time Series	CupFM ARDL bounds	Monotonically Increasing	NA	
		Linear		1	No EKC	NA	
Jaforullah and King (2017)	7 countries (1960- 2010)	Quadratic	Time Series	ARDL bounds	No EKC	Norway Sweden US	NA NA NA

						Canada	25,168.12
					Inverted U-shaped	Denmark	28,638.29
					Inverteu U-snapeu	Finland	29,336.43
						Iceland	27,164.80
						Denmark	NA
						Iceland	NA
					No EKC	Canada	NA
					NULKC	Finland	NA
		Cubic				Norway	NA
						US	NA
					N-shaped	Sweden a. 21,334.09 b. 36,527.51	
Moghadam and Dehbashi (2017)	Iran (1970-2011)	Cubic	Time Series	ARDL bounds	Inverted N-shaped	a. 2.36 Million b. 3.98 Million	
						Pakistan	350.72
	5 South Asian				Inverted U-shaped	India	788.40
Nasreen et al. (2017)	countries (1980-	Quadratic	Time Series	ARDL bounds		Bangladesh	512.86
	2012)					Nepal	589.93
						Sri Lanka	340.36
Neve and Hamaide (2017)	28 countries (1990- 2010)	Cubic	Panel	OLS WLS	No EKC	NA	
Pal and Mitra (2017)	India and China (1971-2012)	Cubic	Time Series	ARDL bounds	No EKC	NA	
Rehman and Rashid (2017)	SAARC countries (1960-2015)	Quadratic	Panel	FMOLS DOLS	No EKC	NA	
	14 Latin American countries (1980-		Panel	Panel Regression	Inverted U-shaped	Inverted U-shaped 2,692.05	
Sapkota and Bastola (2017)		Quadratic				3,157.99	
	2010)				U-shaped	1,288.83	
Ouyang and Lin (2017)	China (1978-2011)	Quadratic	Time Series	Johansen Cointegration	Inverted U-shaped	Extremely Large	
Ozatac et al. (2017)	Turkey (1960-2013)	Quadratic	Time Series	ARDL bounds	Inverted U-shaped	16,648.84	
						All countries	a. 2.78 b. 2,207.39
Sinha et al. (2017)	N11 countries (1990-2014)	Cubic	Panel	System GMM	N-shaped	Developed	a. 1.09 b. 2,290.36
						Industrialized	a. 1.43 b. 4,600.57
						Emerging	a. 1.71

						b. 6,355.17
Wang et al. (2017)	30 Chinese provinces (2000-2013)	Quadratic	Panel	Panel Regression	Inverted U-shaped	Between 656.37 and 176,361.65
	10 Newly			OLS		127.97
Zhang et al. (2017)	Industrialized	Quadratic	Panel	FMOLS	Inverted U-shaped	125.97
	countries (1971- 2013)	Zanarano		DOLS		127.97
	25 African countries (1980-2012)	Quadratic	Panel	DOLS	No EKC	NA
				System GMM	U-shaped	378.99
Zoundi (2017)				Dynamic Fixed Effect	No EKC	NA
				MG	No EKC	NA
				PMG	No EKC	NA

Note:

2SLS: Two-Stage Least Square;

AMG: Augmented Mean Group;

ARDL: Autoregressive Distributed Lag;

CCE: Common Correlated Effects;

CupBC: Bias-Corrected Continuously Updated Estimator

CupFM: Fully-Modified Continuously Updated Estimator

DEA: Data Envelope Analysis;

DFE: Dynamic Fixed-Effects Estimator;

DOLS: Dynamic Ordinary Least Square;

EGLS: Empirical Generalized Least Squares;

FGLS: Feasible Generalized Least Squares;

FMOLS: Fully Modified Ordinary Least Square;

GLS: Generalized Last Square;

GMM: Generalized Method of Moments;

LSDVC: Least Square Dummy Variable Estimator;

MG: Mean Group;

OLS: Ordinary Least Square;

PDOLS: Panel Dynamic Ordinary Least Square;

PLS: Panel Least Square;

PMG: Pooled Mean Group;

PSTR: Panel Smooth Transition Regression;

VECM: Vector Error Correction Model;

WLS: Weighted Least Square

Explanatory Variables	Studies with quadratic specification
Trade Openness	Agras and Chapman (1999), Atici (2009), Halicioglu (2009), Jalil and Mahmud (2009), Tamazian et al. (2009), Bello and Abimbola (2010), Iwata et al. (2010), Tamazian and Rao (2010), Jalil and Feridun (2011), Nasir and Rehman (2011), Pao and Tsai (2011b), Du et al. (2012), Jayanthakumaran et al. (2012), Saboori et al. (2012b), Shahbaz et al. (2012), Chandran and Tang (2013), Kanjilal and Ghosh (2013), Kohler (2013), Ozturk and Acaravci (2013), Shahbaz (2013), Shahbaz et al. (2013b, c), Sulaiman et al. (2013), Tiwari et al. (2013), Arouri et al. (2014), Boutabba (2014), Farhani et al. (2014a, b), Kivyiro and Arminen (2014), Lau et al. (2014), Osabuohien et al. (2014), Oshin and Ogundipe (2014), Shahbaz et al. (2014a, b), Akpan and Abang (2015), Ben Jebli et al. (2015), Dogan et al. (2015), Farhani and Ozturk (2015), Jebli and Youssef (2015), Kasman and Duman (2015), Ozturk and Al-Mulali (2015), Seker et al. (2015), Tang and Tan (2015), Al-Mulali and Ozturk (2016), Dogan and Seker (2016), Dogan and Turkekul (2016), Ertugrul et al. (2016), Jebli et al. (2016), Li et al. (2016), Sinha and Sen (2016), Ozatac et al. (2017), Sapkota and Bastola (2017), Zhang et al. (2017)
Fossil Fuel Energy Consumption	Cole et al. (1997), Lindmark (2002), Richmond and Kaufmann (2006), Ang (2007), Apergis and Payne (2009), Atici (2009), Halicioglu (2009), Jalil and Mahmud (2009), Tamazian et al. (2009), Acaravci and Ozturk (2010), Apergis and Payne (2010), Bello and Abimbola (2010), Iwata et al. (2010), Lean and Smyth (2010), Pao and Tsai (2010), Tamazian and Rao (2010), Nasir and Rehman (2011), Pao and Tsai (2011a, b), Pao et al. (2011), Wang et al. (2011), Arouri et al. (2012), Du et al. (2012), Jayanthakumaran et al. (2012), Saboori et al. (2012b), Shahbaz et al. (2012), Baek and Kim (2013), Chandran and Tang (2013), Kanjilal and Ghosh (2013), Kohler (2013), Ozcan (2013), Ozturk and Acaravci (2013), Saboori and Sulaiman (2013a, b), Shahbaz (2013), Shahbaz et al. (2013a, b), Tiwari et al. (2013), Arouri et al. (2014), Bölük and Mert (2014), Boutabba (2014), Cho et al. (2014), Farhani and Shahbaz (2014), Farhani et al. (2014a, b), Kivyiro and Arminen (2014), Shahbaz et al. (2014a, b), Yavuz (2014), Akpan and Abang (2015), Dogan et al. (2015), Farhani and Ozturk (2015), Heidari et al. (2015), Jebli and Youssef (2015), Kasman and Duman (2015), Ozturk and Al-Mulali (2015), Seker et al. (2015), Shahbaz et al. (2015), Tang and Tan (2015), Ahmad et al. (2016), Al-Mulali and Ozturk (2016), Chakravarty and Mandal (2016), Dogan and Seker (2016), Dogan and Turkekul (2016), Ertugrul et al. (2016), Jebli et al. (2016), Li et al. (2016), Shahbaz et al. (2016), Sinha and Sen (2016), Zambrano-Monserrate et al. (2016), Nasreen et al. (2017), Rehman and Rashid (2017), Sapkota and Bastola (2017), Ozatac et al. (2017), Ouyang and Lin (2017), Wang et al. (2017), Zhang et al. (2017), Zoundi (2017)
Renewable Energy Consumption	Richmond and Kaufmann (2006), Iwata et al. (2011), Baek and Kim (2013), Sulaiman et al. (2013), Bölük and Mert (2014, 2015), Farhani and Shahbaz (2014), Ben Jebli et al. (2015), Jebli and Youssef (2015), Al-Mulali and Ozturk (2016), Dogan and Seker (2016), Jebli et al. (2016), Sugiawan and Managi (2016), Zambrano-Monserrate et al. (2016), Gill et al. (2017), Zoundi (2017)
Explanatory Variables	Studies with cubic specification
Trade Openness	Hill and Magnani (2002), Friedl and Getzner (2003), Lee et al. (2009), He and Richard (2010), Asghari (2012), Onafowora and Owoye (2014), Akpan and Abang (2015), Shahbaz et al. (2016a), Moghadam and Dehbashi (2017)
Fossil Fuel Energy Consumption	Lee et al. (2009), He and Richard (2010), Fosten et al. (2012), Hussain et al. (2012), Abdallah et al. (2013), Onafowora and Owoye (2014), Akpan and Abang (2015), Shahbaz et al. (2016a), Álvarez-Herránz et al. (2017), Moghadam and Dehbashi (2017), Sinha et al. (2017)
Renewable Energy Consumption	López-Menéndez et al. (2014), Lorente and Álvarez-Herranz (2016), Sinha et al. (2017)

Table 2: EKC estimation studies on CO₂ emissions: Classification by explanatory variables

Model Specification	Time Series				
	Monotonically Increasing	No EKC			
Linear	Friedl and Getzner (2003), Lipford and Yandle (2010), Jalil and Feridun (2011), Shahbaz et al. (2013c), Baek (2015), Tutulmaz (2015), Sugiawan and Managi (2016)	Esteve and Tamarit (2012a), Shahbaz (2013), Baek (2015), Jaforullah and King (2017)			
	Monotonically Increasing	Monotonically Decreasing			
	Friedl and Getzner (2003), Lantz and Feng (2006), Lean and Smyth (2010), Seetanah and Vinesh (2010), Pao et al. (2011), Arouri et al. (2012), Chandran and Tang (2013), Azlina et al. (2014), Begum et al. (2015), Farhani and Ozturk (2015), Shahbaz et al. (2015), Ertugrul et al. (2016), Gill et al. (2017)	Pao et al. (2011), Baek (2015)			
	Inverted U-shaped				
Quadratic	Ang (2007), Halicioglu (2009), Jalil and Mahmud (2009), Acaravci and Ozturk (2010), Iwata et al. (2010), Lean and Smyth (2010), Pao and Tsai (2010), Jalil and Feridun (2011), Nasir and Rehman (2011), Pao and Tsai (2011a), Arouri et al. (2012), Esteve and Tamarit (2012b), Jayanthakumaran et al. (2012), Saboori et al. (2012a), Shahbaz et al. (2012), Baek and Kim (2013), Kanjilal and Ghosh (2013), Kohler (2013), Ozcan (2013), Ozturk and Acaravci (2013), Saboori and Sulaiman (2013a), Saboori and Sulaiman (2013b), Shahbaz (2013), Shahbaz et al. (2013a, b, c), Sulaiman et al. (2013), Tiwari et al. (2013), Arouri et al. (2014), Boutabba (2014), Cho et al. (2014), Farhani et al. (2014a), Kivyiro and Arminen (2014), Lau et al. (2014), Shahbaz et al. (2014a, b), Yavuz (2014), Baek (2015), Bölük and Mert (2015), Seker et al. (2015), Shahbaz et al. (2015), Tang and Tan (2015), Tutulmaz (2015), Ahmad et al. (2016), Balaguer and Cantavella (2016), Ertugrul et al. (2016), Sephton and Mann (2016), Sugiawan and Managi (2016), Zambrano-Monserrate et al. (2016), Ahmad et al. (2017), Jaforullah and King (2017), Nasreen et al. (2017), Ouyang and Lin (2017), Ozatac et al. (2017)				
	U-shaped	No EKC			
	Omisakin (2009), Lipford and Yandle (2010), Pao and Tsai (2010), Pao et al. (2011), Arouri et al. (2012), Saboori et al. (2012b), Abdou and Atya (2013), Chandran and Tang (2013), Kanjilal and Ghosh (2013), Ozcan (2013), Saboori and Sulaiman (2013a), Cho et al. (2014), Baek (2015), Begum et al. (2015), Jebli and Youssef (2015), Ozturk and Al-Mulali (2015), Ozturk and Al-Mulali (2015), Shahbaz et al. (2015), Dogan and Turkekul (2016)	Lindmark (2002), Acaravci and Ozturk (2010), Bello and Abimbola (2010), Lean and Smyth (2010), Pao and Tsai (2010), Pao and Tsai (2011a), Pao et al. (2011), Chandran and Tang (2013), Kanjilal and Ghosh (2013), Ozcan (2013), Saboori and Sulaiman (2013b), Cho et al. (2014), Kivyiro and Arminen (2014), Baek (2015), Shahbaz et al. (2015), Ertugrul et al. (2016), Jaforullah and King (2017)			
	Monotonically Increasing	Monotonically Decreasing			
	Hussain et al. (2012), Lapinskienė et al. (2014)	Ahmed and Long (2012), Baek (2015), Shahbaz et al. (2016a)			
	Inverted U-shaped	U-shaped			
Cubic	Chuku (2011), Lapinskienė et al. (2014), Onafowora and Owoye (2014)	Asghari (2012), Abdou and Atya (2013), Lapinskienė et al. (2014)			
	Inverted N-shaped	N-shaped			
	Abdallah et al. (2013), Onafowora and Owoye (2014), Nasr et al. (2015), Moghadam and Dehbashi (2017)	Day and Grafton (2003), Friedl and Getzner (2003), Akbostancı et al. (2009), Fodha and Zaghdoud (2010), Lipford and Yandle (2010), Chuku			

Table 3: EKC estimation studies on CO₂ emissions: Classification by data, model specification, and outcome

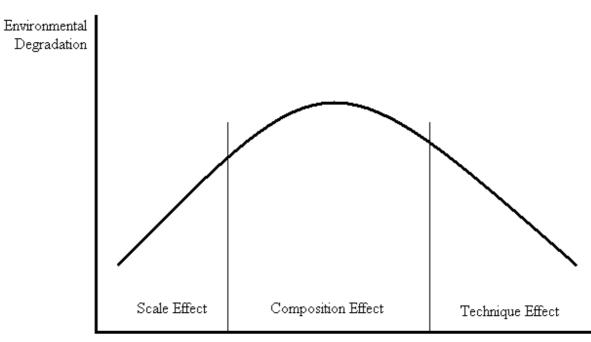
		(2011), Fosten et al. (2012), Abdou and Atya (2013), Alshehry (2015), Baek (2015), Jaforullah and King (2017)		
	<i>No EKC</i> Roca et al. (2001), Akbostancı et al. (2009), He and Richard (2010), Lipf Jaforullah and King (2017), Pal and Mitra (2017)	ord and Yandle (2010), Hossain (2012), Baek (2015), Tutulmaz (2015),		
Model Specification	Pa	nel		
. .	Inverted U-shaped Xu and Lin (2015, 2016)	No EKC Dong et al. (2016)		
Linear	Monotonically Increasing Shi (2003), Richmond and Kaufmann (2006), Tamazian et al. (2009), Do			
	Monotonically Increasing	Monotonically Decreasing		
	Agras and Chapman (1999), Aldy (2005), Richmond and Kaufmann (2006), Yaguchi et al. (2007), York (2007), Tamazian and Rao (2010), Du et al. (2012), Wang (2012), Shafiei and Salim (2014), Akpan and Abang (2015), Dong et al. (2016) Inverted U-shaped	Oshin and Ogundipe (2014), Dong et al. (2016)		
Quadratic	Holtz-Eakin and Selden (1995), Cole et al. (1997), Agras and Chapman (1999), Shi (2003), York et al. (2003), Aldy (2005), Richmond and Kaufmann (2006), Faiz-Ur-Rehman et al. (2007), Yaguchi et al. (2007), York (2007), Apergis and Payne (2009, 2010), Atici (2009), Dutt (2009), Tamazian et al. (2009), Lean and Smyth (2010), Musolesi et al. (2010), Pao and Tsai (2010), Guangyue and Deyong (2011), Iwata et al. (2011), Jobert et al. (2011), Pao and Tsai (2011b), Arouri et al. (2012), Du et al. (2012), Du et al. (2012), Al Sayed and Sek (2013), Mehrara and ali Rezaei (2013), Taguchi (2013), Bölük and Mert (2014), Cho et al. (2014), Farhani and Shahbaz (2014), Farhani et al. (2014b), Osabuohien et al. (2014), Oshin and Ogundipe (2014), Akpan and Abang (2015), Apergis and Ozturk (2015), Heidari et al. (2015), Ibrahim and Rizvi (2015), Kasman and Duman (2015), Al-Mulali and Ozturk (2016), Bilgili et al. (2016), Bilgili et al. (2016), Chakravarty and Mandal (2016), Destek et al. (2016), Dogan and Seker (2016)			
	U-shaped	No EKC		
	Halkos and Tzeremes (2009), Musolesi et al. (2010), Guangyue and Deyong (2011), Wang et al. (2011), Ozcan (2013), Dogan et al. (2015), Jebli et al. (2015), Liu et al. (2015), Chakravarty and Mandal (2016), Dong et al. (2016), Sapkota and Bastola (2017), Zoundi (2017)	Tamazian and Rao (2010), Iwata et al. (2011), Du et al. (2012), Osabuohien et al. (2014), Oshin and Ogundipe (2014), Ibrahim and Rizvi (2015), Liu et al. (2015), Dong et al. (2016), Li et al. (2016), Rehman and Rashid (2017), Zoundi (2017)		
	Monotonically Increasing	Monotonically Decreasing		
Cubic	Shafik and Bandyopadhyay (1992), Shafik (1994), Farzin and Bond (2006), López-Menéndez et al. (2014), Dong et al. (2016)	López-Menéndez et al. (2014), Yaduma et al. (2015), Dong et al. (2016)		
	Inverted U-shaped	U-Shaped		
	Martínez-Zarzoso and Bengochea-Morancho (2004), Galeotti et al. (2006), Lee et al. (2009)	López-Menéndez et al. (2014)		
	N-shaped	Inverted N-shaped		
	Moomaw and Unruh (1997), Hill and Magnani (2002), Martínez- Zarzoso and Bengochea-Morancho (2004), Lee et al. (2009), Musolesi	Dijkgraaf and Vollebergh (2005), Vollebergh et al. (2005), Musolesi et al. (2010), Yaduma et al. (2015), Dong et al. (2016)		

et al. (2010), López-Menéndez et al. (2014), Akpan and Abang (2015),
Balsalobre et al. (2015), Dong et al. (2016), Lorente and Álvarez-
Herranz (2016), Álvarez-Herránz et al. (2017), Sinha et al. (2017)
No EKC
Magnani (2001), Martínez-Zarzoso and Bengochea-Morancho (2004), Dijkgraaf and Vollebergh (2005), Musolesi et al. (2010), López-Menéndez
et al. (2014), Akpan and Abang (2015), Apergis and Ozturk (2015), Yaduma et al. (2015), Dong et al. (2016), Neve and Hamaide (2017)

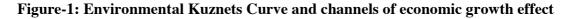
Table 4: EKC estimation studies on CO₂ emissions: Classification by data, methodological adaptation, and outcome

		Time Series
Method	Shape of EKC	Studies
2SLS	U-shaped	Asghari (2012), Ozturk and Al-Mulali (2015)
	Monotonically Increasing	Jalil and Feridun (2011), Shahbaz et al. (2013c), Baek (2015), Begum et al. (2015), Farhani and Ozturk (2015), Ertugrul et al. (2016), Sugiawan and Managi (2016), Gill et al. (2017)
	Monotonically Decreasing	Ahmed and Long (2012), Baek (2015), Shahbaz et al. (2016a)
ARDL bounds	Inverted U-shaped	Ang (2007), Halicioglu (2009), Jalil and Mahmud (2009), Acaravci and Ozturk (2010), Iwata et al. (2010), Jalil and Feridun (2011), Jayanthakumaran et al. (2012), Shahbaz et al. (2012), Baek and Kim (2013), Kohler (2013), Ozturk and Acaravci (2013), Saboori and Sulaiman (2013a, b), Shahbaz (2013), Shahbaz et al. (2013a, b, c), Sulaiman et al. (2013), Tiwari et al. (2013), Arouri et al. (2014), Boutabba (2014), Farhani et al. (2014a), Kivyiro and Arminen (2014), Lau et al. (2014), Onafowora and Owoye (2014), Shahbaz et al. (2014a, b), Baek (2015), Bölük and Mert (2015), Seker et al. (2015), Tang and Tan (2015), Ahmad et al. (2016), Balaguer and Cantavella (2016), Ertugrul et al. (2016), Sugiawan and Managi (2016), Zambrano-Monserrate et al. (2016), Ahmad et al. (2017), Jaforullah and King (2017), Nasreen et al. (2017), Ozatac et al. (2017)
	U-shaped	Saboori et al. (2012b), Saboori and Sulaiman (2013a), Baek (2015), Jebli and Youssef (2015), Dogan and Turkekul (2016)
	N-shaped	Baek (2015), Jaforullah and King (2017)
	Inverted N-shaped	Onafowora and Owoye (2014), Moghadam and Dehbashi (2017)
	No EKC	Acaravci and Ozturk (2010), Hossain (2012), Saboori and Sulaiman (2013b), Shahbaz (2013), Kivyiro and Arminen (2014), Baek (2015), Ertugrul et al. (2016), Jaforullah and King (2017), Pal and Mitra (2017)
	Monotonically Increasing	Arouri et al. (2012)
CCE	Inverted U-shaped	Arouri et al. (2012)
	U-shaped	Arouri et al. (2012)
	Monotonically Increasing	Pao et al. (2011), Chandran and Tang (2013), Shahbaz et al. (2015), Tutulmaz (2015)
Cointegration	Monotonically Decreasing	Pao et al. (2011)
	Inverted U-shaped	Chuku (2011), Nasir and Rehman (2011), Pao and Tsai (2011a), Esteve and Tamarit (2012b), Saboori et al. (2012a), Kanjilal and Ghosh (2013), Shahbaz et al. (2015), Tutulmaz (2015), Ouyang and Lin (2017)
	U-shaped	Pao et al. (2011), Chandran and Tang (2013), Kanjilal and Ghosh (2013), Shahbaz et al. (2015)
	N-shaped	Akbostancı et al. (2009), Fodha and Zaghdoud (2010), Chuku (2011)

	No EKC	Akbostancı et al. (2009), Pao and Tsai (2010), Pao and Tsai (2011a), Pao et al. (2011), Esteve and Tamarit (2012a), Chandran and
		Tang (2013), Kanjilal and Ghosh (2013), Shahbaz et al. (2015), Tutulmaz (2015)
DOLS	No EKC	Lean and Smyth (2010)
FMOLS	No EKC	Bello and Abimbola (2010), Ozcan (2013), Cho et al. (2014)
Kalman Filter	No EKC	Lindmark (2002)
OLS	No EKC	Roca et al. (2001), He and Richard (2010), Lipford and Yandle (2010)
		Panel
Method	Shape of EKC	Studies
2SLS	N-shaped	Lorente and Álvarez-Herranz (2016)
	Monotonically Increasing	Shafiei and Salim (2014), Dong et al. (2016)
AMG	Inverted U-shaped	Dong et al. (2016)
	Inverted U-shaped	Musolesi et al. (2010)
Derreiten	U-shaped	Musolesi et al. (2010)
Bayesian estimation	Inverted N-shaped	Musolesi et al. (2010)
estimation	N-shaped	Musolesi et al. (2010)
	No EKC	Musolesi et al. (2010)
CCE	Inverted U-shaped	Arouri et al. (2012), Apergis et al. (2017)
CMG	Monotonically Increasing	Dong et al. (2016)
	Monotonically Increasing	Tamazian et al. (2009)
Cointegration	Inverted U-shaped	Atici (2009), Tamazian et al. (2009), Pao and Tsai (2010), Guangyue and Deyong (2011), Pao and Tsai (2011b), Mehrara and ali Rezaei (2013)
	U-shaped	Guangyue and Deyong (2011), Wang et al. (2011)
CupBC	Inverted U-shaped	Apergis et al. (2017)
CupFM	Inverted U-shaped	Apergis et al. (2017)
DFE	Inverted U-shaped	Li et al. (2016)
DOI 0	Inverted U-shaped	Lean and Smyth (2010), Farhani and Shahbaz (2014), Farhani et al. (2014b), Osabuohien et al. (2014), Apergis and Ozturk (2015), Ibrahim and Rizvi (2015), Bilgili et al. (2016), Destek et al. (2016), Dogan and Seker (2016), Jebli et al. (2016), Zhang et al. (2017)
DOLS	U-shaped	Dogan et al. (2015)
	No EKC	Osabuohien et al. (2014), Apergis and Ozturk (2015), Ibrahim and Rizvi (2015), Rehman and Rashid (2017), Zoundi (2017)
Panel regression	Monotonically Increasing	Shafik and Bandyopadhyay (1992), Shafik (1994), Agras and Chapman (1999), Farzin and Bond (2006), Yaguchi et al. (2007), López-Menéndez et al. (2014), Dong et al. (2016)
	Monotonically Decreasing	López-Menéndez et al. (2014), Oshin and Ogundipe (2014)
	Inverted U-shaped	Holtz-Eakin and Selden (1995), Cole et al. (1997), Agras and Chapman (1999), Galeotti et al. (2006), Yaguchi et al. (2007), Dutt (2009), Iwata et al. (2011), Du et al. (2012), Al Sayed and Sek (2013), Bölük and Mert (2014), Oshin and Ogundipe (2014), Chakravarty and Mandal (2016), Dong et al. (2016), Sapkota and Bastola (2017), Wang et al. (2017)
	U-shaped	Halkos and Tzeremes (2009), López-Menéndez et al. (2014), Sapkota and Bastola (2017)


	NT 1 1	Moomaw and Unruh (1997), López-Menéndez et al. (2014), Dong et al. (2016), Lorente and Álvarez-Herranz (2016), Álvarez-
	N-shaped	Herránz et al. (2017)
	Inverted N-shaped	Dijkgraaf and Vollebergh (2005), Vollebergh et al. (2005)
	No EKC	Magnani (2001), Martínez-Zarzoso and Bengochea-Morancho (2004), Dijkgraaf and Vollebergh (2005), López-Menéndez et al.
	NOEKC	(2014), Dong et al. (2016), Zoundi (2017)
FGLS	Inverted U-shaped	Aldy (2005)
	Monotonically Increasing	Wang (2012)
		Apergis and Payne (2009), Apergis and Payne (2010), Cho et al. (2014), Farhani and Shahbaz (2014), Farhani et al. (2014b), Apergis
FMOLS	Inverted U-shaped	and Ozturk (2015), Kasman and Duman (2015), Al-Mulali and Ozturk (2016), Bilgili et al. (2016), Destek et al. (2016), Dogan and
TWOLS		Seker (2016), Jebli et al. (2016), Zhang et al. (2017)
	U-shaped	Ozcan (2013), Jebli et al. (2015)
	No EKC	Apergis and Ozturk (2015), Rehman and Rashid (2017)
	Monotonically Increasing	Shi (2003), Akpan and Abang (2015)
GLS	Inverted U-shaped	Shi (2003), Akpan and Abang (2015)
ULS	N-shaped	Akpan and Abang (2015)
	No EKC	Akpan and Abang (2015)
	Monotonically Increasing	Tamazian and Rao (2010), Du et al. (2012), Dong et al. (2016)
	Monotonically Decreasing	Dong et al. (2016)
	Inverted U-shaped	Lee et al. (2009), Taguchi (2013), Dong et al. (2016), Li et al. (2016), Sinha and Sen (2016)
GMM	U-shaped	Chakravarty and Mandal (2016), Dong et al. (2016), Zoundi (2017)
	Inverted N-shaped	Dong et al. (2016)
	N-shaped	Lee et al. (2009), Dong et al. (2016), Sinha et al. (2017)
	No EKC	Tamazian and Rao (2010), Du et al. (2012), Dong et al. (2016)
LSDVC	Inverted U-shaped	Du et al. (2012)
LSDVC	No EKC	Du et al. (2012)
	Inverted U-shaped	Apergis and Ozturk (2015), Apergis et al. (2017)
MG	N-shaped	Martínez-Zarzoso and Bengochea-Morancho (2004)
	No EKC	Martínez-Zarzoso and Bengochea-Morancho (2004), Iwata et al. (2011), Apergis and Ozturk (2015), Li et al. (2016), Zoundi (2017)
Nonparametric		
additive	Inverted U-shaped	Xu and Lin (2015), Xu and Lin (2016)
regression		
	Monotonically Increasing	Aldy (2005), Richmond and Kaufmann (2006), Dong et al. (2016)
OLS	Inverted U-shaped	York et al. (2003), Aldy (2005), Richmond and Kaufmann (2006), Dutt (2009), Jobert et al. (2011), Dong et al. (2016), Shahbaz et
	-	al. (2016b), Zhang et al. (2017)
OLD	U-shaped	Jebli et al. (2015), Liu et al. (2015)
	N-shaped	Hill and Magnani (2002)
	No EKC	Oshin and Ogundipe (2014), Liu et al. (2015), Neve and Hamaide (2017)
PLS	N-shaped	Lorente and Álvarez-Herranz (2016)
PSTR	Inverted U-shaped	Heidari et al. (2015)

Quantile	Monotonically Decreasing	Yaduma et al. (2015)
· .	Inverted N-shaped	Yaduma et al. (2015)
regression	No EKC	Yaduma et al. (2015)
WLS	No EKC	Neve and Hamaide (2017)


Table 5: EKC estimation studies on CO₂ emissions: Classification by data and model outcomes

EKC Model Outcomes	Time Series
Monotonically Increasing	Friedl and Getzner (2003), Lantz and Feng (2006), Lean and Smyth (2010), Lipford and Yandle (2010), Seetanah and Vinesh (2010), Jalil and Feridun (2011), Pao et al. (2011), Arouri et al. (2012), Hussain et al. (2012), Chandran and Tang (2013), Shahbaz et al. (2013c), Azlina et al. (2014), Lapinskienė et al. (2014), Baek (2015), Begum et al. (2015), Farhani and Ozturk (2015), Shahbaz et al. (2015), Tutulmaz (2015), Ertugrul et al. (2016), Sugiawan and Managi (2016), Gill et al. (2017)
Monotonically Decreasing	Pao et al. (2011), Ahmed and Long (2012), Baek (2015), Shahbaz et al. (2016a)
Inverted U-shaped	Ang (2007), Halicioglu (2009), Jalil and Mahmud (2009), Acaravci and Ozturk (2010), Iwata et al. (2010), Lean and Smyth (2010), Pao and Tsai (2010), Chuku (2011), Jalil and Feridun (2011), Nasir and Rehman (2011), Pao and Tsai (2011a), Arouri et al. (2012), Arouri et al. (2012), Esteve and Tamarit (2012b), Jayanthakumaran et al. (2012), Saboori et al. (2012a), Shahbaz et al. (2012), Baek and Kim (2013), Kanjilal and Ghosh (2013), Kohler (2013), Ozcan (2013), Ozturk and Acaravci (2013), Saboori and Sulaiman (2013 a, b), Shahbaz (2013), Shahbaz et al. (2013 a, b, c), Sulaiman et al. (2013), Tiwari et al. (2013), Arouri et al. (2014), Boutabba (2014), Cho et al. (2014), Farhani et al. (2014a), Kivyiro and Arminen (2014), Lapinskiene et al. (2014), Lau et al. (2014), Onafowora and Owoye (2014), Shahbaz et al. (2014 a, b), Yavuz (2014), Baek (2015), Bölük and Mert (2015), Seker et al. (2015), Shahbaz et al. (2015), Tutulmaz (2015), Ahmad et al. (2016), Balaguer and Cantavella (2016), Ertugrul et al. (2016), Sephton and Mann (2016), Sugiawan and Managi (2016), Zambrano-Monserrate et al. (2016), Ahmad et al. (2017), Jaforullah and King (2017), Nasreen et al. (2017), Ouyang and Lin (2017), Ozatac et al. (2017)
U-shaped	Omisakin (2009), Lipford and Yandle (2010), Pao and Tsai (2010), Pao et al. (2011), Arouri et al. (2012), Asghari (2012), Saboori et al. (2012b), Abdou and Atya (2013), Chandran and Tang (2013), Kanjilal and Ghosh (2013), Ozcan (2013), Saboori and Sulaiman (2013a), Cho et al. (2014), Lapinskienė et al. (2014), Baek (2015), Begum et al. (2015), Jebli and Youssef (2015), Ozturk and Al-Mulali (2015), Shahbaz et al. (2015), Dogan and Turkekul (2016)
Inverted N-shaped	Abdallah et al. (2013), Onafowora and Owoye (2014), Nasr et al. (2015), Moghadam and Dehbashi (2017)
N-shaped	Day and Grafton (2003), Friedl and Getzner (2003), Akbostancı et al. (2009), Fodha and Zaghdoud (2010), Lipford and Yandle (2010), Chuku (2011), Fosten et al. (2012), Abdou and Atya (2013), Alshehry (2015), Baek (2015), Jaforullah and King (2017)
No EKC	Roca et al. (2001), Lindmark (2002), Akbostancı et al. (2009), Acaravci and Ozturk (2010), Bello and Abimbola (2010), He and Richard (2010), Lean and Smyth (2010), Lipford and Yandle (2010), Pao and Tsai (2010), Pao and Tsai (2011a), Pao et al. (2011), Esteve and Tamarit (2012a), Hossain (2012), Chandran and Tang (2013), Kanjilal and Ghosh (2013), Ozcan (2013), Saboori and Sulaiman (2013b), Shahbaz (2013), Cho et al. (2014), Kivyiro and Arminen (2014), Baek (2015), Shahbaz et al. (2015), Tutulmaz (2015), Ertugrul et al. (2016), Jaforullah and King (2017), Pal and Mitra (2017)
EKC Model Outcomes	Panel

	Shafik and Bandyopadhyay (1992), Shafik (1994), Agras and Chapman (1999), Shi (2003), Aldy (2005), Farzin and Bond (2006),
Monotonically Increasing	Richmond and Kaufmann (2006), Yaguchi et al. (2007), York (2007), Tamazian et al. (2009), Tamazian and Rao (2010), Du et
	al. (2012), Wang (2012), Shafiei and Salim (2014), Akpan and Abang (2015), Dong et al. (2016)
Monotonically Decreasing	López-Menéndez et al. (2014), Oshin and Ogundipe (2014), Yaduma et al. (2015), Dong et al. (2016)
	Holtz-Eakin and Selden (1995), Cole et al. (1997), Agras and Chapman (1999), Galeotti and Lanza (1999), York et al. (2003),
	Aldy (2005), Galeotti et al. (2006), Richmond and Kaufmann (2006), Faiz-Ur-Rehman et al. (2007), Yaguchi et al. (2007), York
	(2007), Apergis and Payne (2009), Atici (2009), Dutt (2009), Lee et al. (2009), Tamazian et al. (2009), Apergis and Payne (2010),
	Lean and Smyth (2010), Musolesi et al. (2010), Pao and Tsai (2010), Guangyue and Deyong (2011), Iwata et al. (2011), Jobert et
	al. (2011), Pao and Tsai (2011b), Du et al. (2012), Al Sayed and Sek (2013), Mehrara and ali Rezaei (2013), Taguchi (2013),
Inverted U-shaped	Bölük and Mert (2014), Cho et al. (2014), Farhani and Shahbaz (2014), Farhani et al. (2014b), Osabuohien et al. (2014), Oshin
	and Ogundipe (2014), Akpan and Abang (2015), Apergis and Ozturk (2015), Heidari et al. (2015), Ibrahim and Rizvi (2015),
	Kasman and Duman (2015), Xu and Lin (2015), Al-Mulali and Ozturk (2016), Bilgili et al. (2016), Chakravarty and Mandal
	(2016), Destek et al. (2016), Dogan and Seker (2016), Dong et al. (2016), Jebli et al. (2016), Li et al. (2016), Li et al. (2016),
	Shahbaz et al. (2016b), Sinha and Sen (2016), Xu and Lin (2016), Apergis et al. (2017), Sapkota and Bastola (2017), Wang et al.
	(2017), Zhang et al. (2017)
	Halkos and Tzeremes (2009), Musolesi et al. (2010), Guangyue and Deyong (2011), Wang et al. (2011), Ozcan (2013), López-
U-shaped	Menéndez et al. (2014), Dogan et al. (2015), Jebli et al. (2015), Liu et al. (2015), Chakravarty and Mandal (2016), Dong et al.
	(2016), Sapkota and Bastola (2017), Zoundi (2017)
Inverted N-shaped	Dijkgraaf and Vollebergh (2005), Vollebergh et al. (2005), Musolesi et al. (2010), Yaduma et al. (2015), Dong et al. (2016)
	Moomaw and Unruh (1997), Hill and Magnani (2002), Martínez-Zarzoso and Bengochea-Morancho (2004), Lee et al. (2009),
N-shaped	Musolesi et al. (2010), López-Menéndez et al. (2014), Akpan and Abang (2015), Dong et al. (2016), Álvarez-Herránz et al. (2017),
_	Sinha et al. (2017)
	Magnani (2001), Martínez-Zarzoso and Bengochea-Morancho (2004), Dijkgraaf and Vollebergh (2005), Musolesi et al. (2010),
No EKC	Tamazian and Rao (2010), Iwata et al. (2011), Du et al. (2012), López-Menéndez et al. (2014), Osabuohien et al. (2014), Oshin
NU EKU	and Ogundipe (2014), Akpan and Abang (2015), Apergis and Ozturk (2015), Ibrahim and Rizvi (2015), Liu et al. (2015), Yaduma
	et al. (2015), Dong et al. (2016), Li et al. (2016), Neve and Hamaide (2017), Rehman and Rashid (2017), Zoundi (2017)

Economic Growth

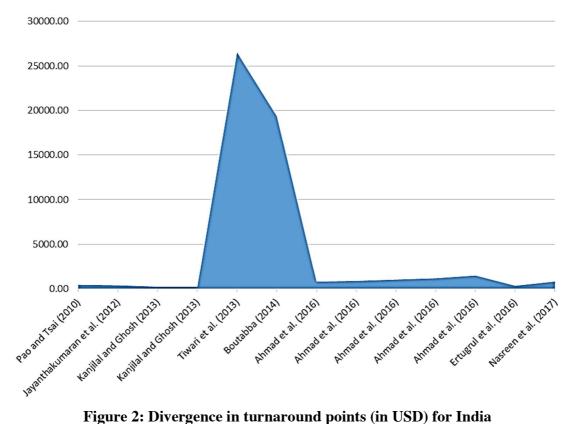


Figure 2: Divergence in turnaround points (in USD) for India

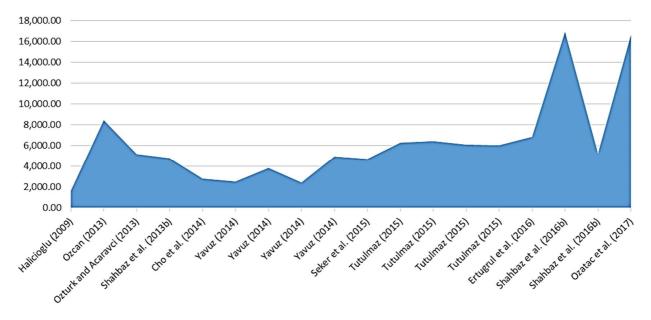


Figure 3: Divergence in turnaround points (in USD) for Turkey

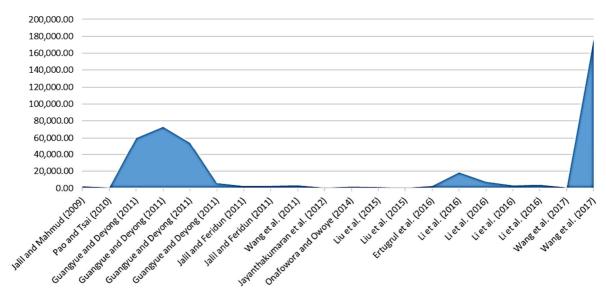


Figure 4: Divergence in turnaround points (in USD) for China

References

- Abdallah, K.B., Belloumi, M., De Wolf, D., 2013. Indicators for sustainable energy development:A multivariate cointegration and causality analysis from Tunisian road transport sector.Renewable and Sustainable Energy Reviews, 25, 34-43.
- Abdou, D.M.S., Atya, E.M., 2013. Investigating the energy-environmental Kuznets curve: evidence from Egypt. International Journal of Green Economics, 7(2), 103-115.
- Acaravci, A., Ozturk, I., 2010. On the relationship between energy consumption, CO₂ emissions and economic growth in Europe. Energy, 35(12), 5412-5420.
- Agras, J., Chapman, D., 1999. A dynamic approach to the Environmental Kuznets Curve hypothesis. Ecological Economics, 28(2), 267-277.
- Ahmad, A., Zhao, Y., Shahbaz, M., Bano, S., Zhang, Z., Wang, S., Liu, Y., 2016. Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy. Energy Policy, 96, 131-143.
- Ahmad, N., Du, L., Lu, J., Wang, J., Li, H.Z., Hashmi, M.Z., 2017. Modelling the CO₂ emissions and economic growth in Croatia: Is there any environmental Kuznets curve?. Energy, 123, 164-172.
- Ahmed, K., Long, W., 2012. Environmental Kuznets curve and Pakistan: an empirical analysis. Procedia Economics and Finance, 1, 4-13.
- Akbostancı, E., Türüt-Aşık, S., Tunç, G.İ., 2009. The relationship between income and environment in Turkey: Is there an environmental Kuznets curve? Energy Policy, 37(3), 861-867.
- Akpan, U.F., Abang, D.E., 2015. Environmental quality and economic growth: A panel analysis of the "U" in Kuznets. Journal of Economic Research, 20(3), 317-339.

- Al-Mulali, U., Ozturk, I., 2016. The investigation of environmental Kuznets curve hypothesis in the advanced economies: The role of energy prices. Renewable and Sustainable Energy Reviews, 54, 1622-1631.
- Al Sayed, A.R., Sek, S.K., 2013. Environmental Kuznets Curve: Evidences from Developed and Developing Economies. Applied Mathematical Sciences, 7(22), 1081-1092.
- Aldy, J.E., 2005. An environmental Kuznets curve analysis of US state-level carbon dioxide emissions. The Journal of Environment & Development, 14(1), 48-72.
- Alshehry, A.S., 2015. Economic Growth and Environmental Degradation in Saudi Arabia. Journal of Economics and Sustainable Development, 6(2), 33-44.
- Álvarez-Herránz, A., Balsalobre, D., Cantos, J.M., Shahbaz, M., 2017. Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries. Energy Policy, 101, 90-100.
- Ang, J.B., 2007. CO₂ emissions, energy consumption, and output in France. Energy Policy, 35(10), 4772-4778.
- Apergis, N., Christou, C., Gupta, R., 2017. Are there Environmental Kuznets Curves for US statelevel CO₂ emissions?. Renewable and Sustainable Energy Reviews, 69, 551-558.
- Apergis, N., Payne, J.E., 2009. CO₂ emissions, energy usage, and output in Central America. Energy Policy, 37(8), 3282-3286.
- Apergis, N., Payne, J.E., 2010. The emissions, energy consumption, and growth nexus: evidence from the commonwealth of independent states. Energy Policy, 38(1), 650-655.
- Apergis, N., Ozturk, I., 2015. Testing environmental Kuznets curve hypothesis in Asian countries. Ecological Indicators, 52, 16-22.

- Arouri, M.E.H., Youssef, A.B., M'henni, H., Rault, C., 2012. Energy consumption, economic growth and CO₂ emissions in Middle East and North African countries. Energy Policy, 45, 342-349.
- Arouri, M., Shahbaz, M., Onchang, R., Islam, F., Teulon, F., 2014. Environmental Kuznets curve in Thailand: cointegration and causality analysis. Journal of Energy Development, 39, 149-170.
- Asghari, M., 2012. Environmental Kuznets curve and growth source in Iran. Panoeconomicus, 59(5), 609-623.
- Atici, C., 2009. Carbon emissions in Central and Eastern Europe: environmental Kuznets curve and implications for sustainable development. Sustainable Development, 17(3), 155-160.
- Azlina, A.A., Law, S.H., Mustapha, N.H.N., 2014. Dynamic linkages among transport energy consumption, income and CO₂ emission in Malaysia. Energy Policy, 73, 598-606.
- Baek, J., Kim, H.S., 2013. Is economic growth good or bad for the environment? Empirical evidence from Korea. Energy Economics, 36, 744-749.
- Baek, J., 2015. Environmental Kuznets curve for CO₂ emissions: the case of Arctic countries. Energy Economics, 50, 13-17.
- Balaguer, J., Cantavella, M., 2016. Estimating the environmental Kuznets curve for Spain by considering fuel oil prices (1874–2011). Ecological Indicators, 60, 853-859.
- Balsalobre, D., Álvarez, A., Cantos, J.M., 2015. Public budgets for energy RD&D and the effects on energy intensity and pollution levels. Environmental Science and Pollution Research, 22(7), 4881-4892.
- Beckerman, W., 1992. Economic growth and the environment: Whose growth? Whose environment? World Development, 20(4), 481-496.

- Begum, R.A., Sohag, K., Abdullah, S.M.S., Jaafar, M., 2015. CO₂ emissions, energy consumption, economic and population growth in Malaysia. Renewable and Sustainable Energy Reviews, 41, 594-601.
- Bello, A.K., Abimbola, O.M., 2010. Does the level of economic growth influence environmental quality in Nigeria: A test of environmental Kuznets curve (EKC) hypothesis. Pakistan Journal of Social Sciences, 7(4), 325-329.
- Bilgili, F., Koçak, E., Bulut, Ü., 2016. The dynamic impact of renewable energy consumption on
 CO₂ emissions: A revisited Environmental Kuznets Curve approach. Renewable and
 Sustainable Energy Reviews, 54, 838-845.
- Bölük, G., Mert, M., 2014. Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy, 74, 439-446.
- Bölük, G., Mert, M., 2015. The renewable energy, growth and environmental Kuznets curve in Turkey: an ARDL approach. Renewable and Sustainable Energy Reviews, 52, 587-595.
- Boutabba, M.A., 2014. The impact of financial development, income, energy and trade on carbon emissions: evidence from the Indian economy. Economic Modelling, 40, 33-41.
- Cantore, N., 2009. Social preferences and Environmental Kuznets Curve in climate change integrated assessment modelling. International Journal of Global Environmental Issues, 10(1-2), 123-142.
- Carson, R.T., Jeon, Y., McCubbin, D.R., 1997. The relationship between air pollution emissions and income: US data. Environment and Development Economics, 2(04), 433-450.

- Chakravarty, D., Mandal, S.K., 2016. Estimating the relationship between economic growth and environmental quality for the BRICS economies-a dynamic panel data approach. The Journal of Developing Areas, 50(5), 119-130.
- Chandran, V.G.R., Tang, C.F., 2013. The impacts of transport energy consumption, foreign direct investment and income on CO₂ emissions in ASEAN-5 economies. Renewable and Sustainable Energy Reviews, 24, 445-453.
- Cho, C.H., Chu, Y.P., Yang, H.Y., 2014. An environment Kuznets curve for GHG emissions: a panel cointegration analysis. Energy Sources, Part B: Economics, Planning, and Policy, 9(2), 120-129.
- Chuku, A., 2011. Economic development and environmental quality in Nigeria: is there an environmental Kuznets curve?. Department of Economics, University of Uyo.
- Cole, M.A., Rayner, A.J., Bates, J.M., 1997. The environmental Kuznets curve: an empirical analysis. Environment and Development Economics, 2(4), 401-416.
- Day, K.M., Grafton, R.Q., 2003. Growth and the environment in Canada: An empirical analysis. Canadian Journal of Agricultural Economics, 51(2), 197-216.
- Destek, M.A., Balli, E., Manga, M., 2016. The relationship between CO₂ emission, energy consumption, urbanization and trade openness for selected CEECs. Research in World Economy, 7(1), 52-58.
- Dijkgraaf, E., Vollebergh, H.R., 2005. A Test for Parameter Homogeneity in CO₂ Panel EKC Estimations. Environmental and Resource Economics, 32(2), 229-239.
- Dinda, S., 2004. Environmental Kuznets curve hypothesis: a survey. Ecological Economics, 49(4), 431-455.

- Duflou, J.R., Sutherland, J.W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., ... Kellens, K., 2012. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals-Manufacturing Technology, 61(2), 587-609.
- Dogan, E., Seker, F., 2016. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renewable and Sustainable Energy Reviews, 60, 1074-1085.
- Dogan, E., Turkekul, B., 2016. CO₂ emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA. Environmental Science and Pollution Research, 23(2), 1203-1213.
- Dogan, E., Seker, F., Bulbul, S., 2015. Investigating the impacts of energy consumption, real GDP, tourism and trade on CO₂ emissions by accounting for cross-sectional dependence: A panel study of OECD countries. Current Issues in Tourism, 1-19.
- Dong, B., Wang, F., Guo, Y., 2016. The global EKCs. International Review of Economics & Finance, 43, 210-221.
- Du, L., Wei, C., Cai, S., 2012. Economic development and carbon dioxide emissions in China: Provincial panel data analysis. China Economic Review, 23(2), 371-384.
- Dutt, K., 2009. Governance, institutions and the environment-income relationship: a cross-country study. Environment, Development and Sustainability, 11(4), 705-723.
- Ertugrul, H.M., Cetin, M., Seker, F., Dogan, E., 2016. The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries. Ecological Indicators, 67, 543-555.
- Esteve, V., Tamarit, C., 2012a. Is there an environmental Kuznets curve for Spain? Fresh evidence from old data. Economic Modelling, 29(6), 2696-2703.

- Esteve, V., Tamarit, C., 2012b. Threshold cointegration and nonlinear adjustment between CO₂ and income: the environmental Kuznets curve in Spain, 1857–2007. Energy Economics, 34(6), 2148-2156.
- Faiz-Ur-Rehman, Ali, A., Nasir, M., 2007. Corruption, trade openness, and environmental quality:A panel data analysis of selected South Asian countries. The Pakistan Development Review, 46(4), 673-688.
- Farhani, S., Chaibi, A., Rault, C., 2014a. CO₂ emissions, output, energy consumption, and trade in Tunisia. Economic Modelling, 38, 426-434.
- Farhani, S., Mrizak, S., Chaibi, A., Rault, C., 2014b. The environmental Kuznets curve and sustainability: A panel data analysis. Energy Policy, 71, 189-198.
- Farhani, S., Shahbaz, M., 2014. What role of renewable and non-renewable electricity consumption and output is needed to initially mitigate CO₂ emissions in MENA region?. Renewable and Sustainable Energy Reviews, 40, 80-90.
- Farhani, S., Ozturk, I., 2015. Causal relationship between CO₂ emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia. Environmental Science and Pollution Research, 22(20), 15663-15676.
- Farzin, Y.H., Bond, C.A., 2006. Democracy and environmental quality. Journal of Development Economics, 81(1), 213-235.
- Fodha, M., Zaghdoud, O., 2010. Economic growth and pollutant emissions in Tunisia: an empirical analysis of the environmental Kuznets curve. Energy Policy, 38(2), 1150-1156.
- Fosten, J., Morley, B., Taylor, T., 2012. Dynamic misspecification in the environmental Kuznets curve: evidence from CO₂ and SO₂ emissions in the United Kingdom. Ecological Economics, 76, 25-33.

- Friedl, B., Getzner, M., 2003. Determinants of CO₂ emissions in a small open economy. Ecological Economics, 45(1), 133-148.
- Galeotti, M., Lanza, A., 1999. Richer and cleaner? A study on carbon dioxide emissions in developing countries. Energy Policy, 27(10), 565-573.
- Galeotti, M., Lanza, A., Pauli, F., 2006. Reassessing the environmental Kuznets curve for CO₂ emissions: a robustness exercise. Ecological Economics, 57(1), 152-163.
- Gill, A.R., Viswanathan, K.K., Hassan, S., 2017. A test of environmental Kuznets curve (EKC) for carbon emission and potential of renewable energy to reduce green houses gases (GHG) in Malaysia. Environment, Development and Sustainability, 1-12.
- Grossman, G.M., Krueger, A.B., 1991. Environmental Impacts of a North American Free Trade Agreement. National Bureau of Economic Research. Working paper no. w3914.
- Grossman, G.M., 1995. Pollution and growth: what do we know? In Goldin I. and Winters L.A., The Economics of Sustainable Development, Cambridge University Press, 19-45.
- Guangyue, X., Deyong, S., 2011. An empirical study on the environmental Kuznets curve for China's carbon emissions: based on provincial panel data. Chinese Journal of Population Resources and Environment, 9(3), 66-76.
- Halicioglu, F., 2009. An econometric study of CO₂ emissions, energy consumption, income and foreign trade in Turkey. Energy Policy, 37(3), 1156-1164.
- Halkos, G.E., Tzeremes, N.G., 2009. Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis. Ecological Economics, 68(7), 2168-2176.
- He, J., Richard, P., 2010. Environmental Kuznets curve for CO₂ in Canada. Ecological Economics, 69(5), 1083-1093.

- Heidari, H., Katircioğlu, S.T., Saeidpour, L., 2015. Economic growth, CO₂ emissions, and energy consumption in the five ASEAN countries. International Journal of Electrical Power & Energy Systems, 64, 785-791.
- Hill, R.J., Magnani, E., 2002. An exploration of the conceptual and empirical basis of the environmental Kuznets curve. Australian Economic Papers, 41(2), 239-254.
- Holtz-Eakin, D., Selden, T.M., 1995. Stoking the fires? CO₂ emissions and economic growth. Journal of Public Economics, 57(1), 85-101.
- Hossain, S., 2012. An econometric analysis for CO2 emissions, energy consumption, economic growth, foreign trade and urbanization of Japan. Low Carbon Economy, 3(3), 92-105.
- Hussain, M., Irfan Javaid, M., Drake, P.R., 2012. An econometric study of carbon dioxide (CO₂) emissions, energy consumption, and economic growth of Pakistan. International Journal of Energy Sector Management, 6(4), 518-533.
- Ibrahim, M.H., Law, S.H., 2014. Social capital and CO₂ emission—output relations: a panel analysis. Renewable and Sustainable Energy Reviews, 29, 528-534.
- Ibrahim, M.H., Rizvi, S.A.R., 2015. Emissions and trade in Southeast and East Asian countries: a panel co-integration analysis. International Journal of Climate Change Strategies and Management, 7(4), 460-475.
- Iwata, H., Okada, K., Samreth, S., 2010. Empirical study on the environmental Kuznets curve for CO₂ in France: the role of nuclear energy. Energy Policy, 38(8), 4057-4063.
- Iwata, H., Okada, K., Samreth, S., 2011. A note on the environmental Kuznets curve for CO₂: a pooled mean group approach. Applied Energy, 88(5), 1986-1996.
- Jaforullah, M., King, A., 2017. The econometric consequences of an energy consumption variable in a model of CO₂ emissions. Energy Economics, 63, 84-91.

- Jalil, A., Mahmud, S.F., 2009. Environment Kuznets curve for CO₂ emissions: a cointegration analysis for China. Energy Policy, 37(12), 5167-5172.
- Jalil, A., Feridun, M., 2011. The impact of growth, energy and financial development on the environment in China: A cointegration analysis. Energy Economics, 33(2), 284-291.
- Jaunky, V.C., 2011. The CO₂ emissions-income nexus: evidence from rich countries. Energy Policy, 39(3), 1228-1240.
- Jayanthakumaran, K., Verma, R., Liu, Y., 2012. CO₂ emissions, energy consumption, trade and income: a comparative analysis of China and India. Energy Policy, 42, 450-460.
- Jebli, M.B., Youssef, S.B., 2015. The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia. Renewable and Sustainable Energy Reviews, 47, 173-185.
- Jebli, M.B., Youssef, S.B., Ozturk, I., 2015. The Role of Renewable Energy Consumption and Trade: Environmental Kuznets Curve Analysis for Sub-Saharan Africa Countries. African Development Review, 27(3), 288-300.
- Jebli, M.B., Youssef, S.B., Ozturk, I., 2016. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecological Indicators, 60, 824-831.
- Jobert, T., Karanfil, F., Tykhonenko, A., 2011. Environmental Kuznets Curve for carbon dioxide emissions: lack of robustness to heterogeneity? Working Paper, Université Nice Sophia Antipolis.
- Kanjilal, K., Ghosh, S., 2013. Environmental Kuznet's curve for India: Evidence from tests for cointegration with unknown structuralbreaks. Energy Policy, 56, 509-515.

- Kasman, A., Duman, Y.S., 2015. CO₂ emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis. Economic Modelling, 44, 97-103.
- Kijima, M., Nishide, K., Ohyama, A., 2010. Economic models for the environmental Kuznets curve: A survey. Journal of Economic Dynamics and Control, 34(7), 1187-1201.
- King, A., Schneider, B., 1992. The First Global Revolution. Orient Longman, Council of the Club of Rome.
- Kivyiro, P., Arminen, H., 2014. Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: Causality analysis for Sub-Saharan Africa. Energy, 74, 595-606.
- Kohler, M., 2013. CO₂ emissions, energy consumption, income and foreign trade: a South African perspective. Energy Policy, 63, 1042-1050.
- Kuznets, S., 1955. Economic Growth and Income Inequality. The American Economic Review. 45(1), 1-28.
- Lantz, V., Feng, Q., 2006. Assessing income, population, and technology impacts on CO₂ emissions in Canada: Where's the EKC?. Ecological Economics, 57(2), 229-238.
- Lapinskienė, G., Tvaronavičienė, M., Vaitkus, P., 2014. Greenhouse gases emissions and economic growth–evidence substantiating the presence of environmental Kuznets curve in the EU. Technological and Economic Development of Economy, 20(1), 65-78.
- Lau, L.S., Choong, C.K., Eng, Y.K., 2014. Investigation of the environmental Kuznets curve for carbon emissions in Malaysia: Do foreign direct investment and trade matter?. Energy Policy, 68, 490-497.

- Lean, H.H., Smyth, R., 2010. CO₂ emissions, electricity consumption and output in ASEAN. Applied Energy, 87(6), 1858-1864.
- Lee, C.C., Chiu, Y.B., Sun, C.H., 2009. Does one size fit all? A reexamination of the environmental Kuznets curve using the dynamic panel data approach. Applied Economic Perspectives and Policy, 31(4), 751-778.
- Li, T., Wang, Y., Zhao, D., 2016. Environmental Kuznets Curve in China: New evidence from dynamic panel analysis. Energy Policy, 91, 138-147.
- Lindmark, M., 2002. An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870–1997. Ecological Economics, 42(1), 333-347.
- Lipford, J.W., Yandle, B., 2010. Environmental Kuznets curves, carbon emissions, and public choice. Environment and Development Economics, 15(04), 417-438.
- Liu, Y., Zhou, Y., Wu, W., 2015. Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Applied Energy, 155, 904-917.
- López-Menéndez, A.J., Pérez, R., Moreno, B., 2014. Environmental costs and renewable energy: Re-visiting the Environmental Kuznets Curve. Journal of Environmental Management, 145, 368-373.
- Lorente, D.B., Álvarez-Herranz, A., 2016. Economic growth and energy regulation in the environmental Kuznets curve. Environmental Science and Pollution Research, 23(16), 16478-16494.
- Magnani, E., 2001. The Environmental Kuznets Curve: development path or policy result?. Environmental Modelling & Software, 16(2), 157-165.

- Martínez-Zarzoso, I., Bengochea-Morancho, A., 2004. Pooled mean group estimation of an environmental Kuznets curve for CO₂. Economics Letters, 82(1), 121-126.
- McConnell, K.E., 1997. Income and the demand for environmental quality. Environment and Development Economics, 2(4), 383-399.
- Meadows, D.H., Meadows, D., Randers, J., Behrens III, W.W., 1972. The Limits to Growth: A Report for the Club of Rome's Project on the Predicament of Mankind. Universe, New York.
- Mehrara, M., ali Rezaei, A., 2013. A Panel Estimation of the Relationship Between Trade Liberalization, Economic Growth and CO₂ Emissions in BRICS Countries. Hyperion Economic Journal, 4(1), 3-27.
- Mills, J.H., Waite, T.A., 2009. Economic prosperity, biodiversity conservation, and the environmental Kuznets curve. Ecological Economics, 68(7), 2087-2095.
- Moghadam, H.E., Dehbashi, V., 2017. The impact of financial development and trade on environmental quality in Iran. Empirical Economics, 1-23.
- Moomaw, W.R., Unruh, G.C., 1997. Are environmental Kuznets curves misleading us? The case of CO₂ emissions. Environment and Development Economics, 2(04), 451-463.
- Musolesi, A., Mazzanti, M., Zoboli, R., 2010. A panel data heterogeneous Bayesian estimation of environmental Kuznets curves for CO₂ emissions. Applied Economics, 42(18), 2275-2287.
- Nasir, M., Rehman, F.U., 2011. Environmental Kuznets curve for carbon emissions in Pakistan: an empirical investigation. Energy Policy, 39(3), 1857-1864.
- Nasr, A.B., Gupta, R., Sato, J.R., 2015. Is there an Environmental Kuznets Curve for South Africa? A co-summability approach using a century of data. Energy Economics, 52, 136-141.

- Nasreen, S., Anwar, S., Ozturk, I., 2017. Financial stability, energy consumption and environmental quality: Evidence from South Asian economies. Renewable and Sustainable Energy Reviews, 67, 1105-1122.
- Neve, M., Hamaide, B., 2017. Environmental Kuznets Curve with Adjusted Net Savings as a Trade-Off Between Environment and Development. Australian Economic Papers, 56(1), 39-58.
- Omisakin, O.A., 2009. Economic Growth and Environmental Quality in Nigeria: Does Environmental Kuznets Curve Hypothesis Hold?. Environmental Research Journal, 3(1), 14-18.
- Onafowora, O.A., Owoye, O., 2014. Bounds testing approach to analysis of the environment Kuznets curve hypothesis. Energy Economics, 44, 47-62.
- Osabuohien, E.S., Efobi, U.R., Gitau, C.M.W., 2014. Beyond the environmental Kuznets curve in Africa: evidence from panel cointegration. Journal of Environmental Policy & Planning, 16(4), 517-538.
- Oshin, S., Ogundipe, A.A., 2014. An Empirical Examination of Environmental Kuznets Curve (EKC) in West Africa. Euro-Asia Journal of Economics and Finance, 3(1).
- Ouyang, X., Lin, B., 2017. Carbon dioxide (CO₂) emissions during urbanization: A comparative study between China and Japan. Journal of Cleaner Production, 143, 356-368.
- Ozatac, N., Gokmenoglu, K.K., Taspinar, N., 2017. Testing the EKC hypothesis by considering trade openness, urbanization, and financial development: the case of Turkey. Environmental Science and Pollution Research, 24(20), 16690-16701.
- Ozcan, B., 2013. The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis. Energy Policy, 62, 1138-1147.

- Ozturk, I., Acaravci, A., 2013. The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey. Energy Economics, 36, 262-267.
- Ozturk, I., Al-Mulali, U., 2015. Investigating the validity of the environmental Kuznets curve hypothesis in Cambodia. Ecological Indicators, 57, 324-330.
- Pal, D., Mitra, S.K., 2017. The environmental Kuznets curve for carbon dioxide in India and China: Growth and pollution at crossroad. Journal of Policy Modeling, 39(2), 371-385.
- Panayotou, T., 1993. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development. International Labour Organization. Working paper no. 292778.
- Pao, H.T., Tsai, C.M., 2010. CO₂ emissions, energy consumption and economic growth in BRIC countries. Energy Policy, 38(12), 7850-7860.
- Pao, H.T., Tsai, C.M., 2011a. Modeling and forecasting the CO₂ emissions, energy consumption, and economic growth in Brazil. Energy, 36(5), 2450-2458.
- Pao, H.T., Tsai, C.M., 2011b. Multivariate Granger causality between CO₂ emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy, 36(1), 685-693.
- Pao, H.T., Yu, H.C., Yang, Y.H., 2011. Modeling the CO₂ emissions, energy use, and economic growth in Russia. Energy, 36(8), 5094-5100.
- Rehman, M.U., Rashid, M., 2017. Energy consumption to environmental degradation, the growth appetite in SAARC nations. Renewable Energy, 111, 284-294.
- Richmond, A.K., Kaufmann, R.K., 2006. Is there a turning point in the relationship between income and energy use and/or carbon emissions?. Ecological Economics, 56(2), 176-189.

- Roca, J., Padilla, E., Farré, M., Galletto, V., 2001. Economic growth and atmospheric pollution in Spain: discussing the environmental Kuznets curve hypothesis. Ecological Economics, 39(1), 85-99.
- Saboori, B., Sulaiman, J.B., Mohd, S., 2012a. Economic growth and CO₂ emissions in Malaysia: a cointegration analysis of the environmental Kuznets curve. Energy Policy, 51, 184-191.
- Saboori, B., Sulaiman, J.B., Mohd, S., 2012b. An empirical analysis of the environmental Kuznets curve for CO₂ emissions in Indonesia: the role of energy consumption and foreign trade.
 International Journal of Economics and Finance, 4(2), 243.
- Saboori, B., Sulaiman, J., 2013a. CO₂ emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: a cointegration approach. Energy, 55, 813-822.
- Saboori, B., Sulaiman, J., 2013b. Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia. Energy Policy, 60, 892-905.
- Sadorsky, P., 2010. The impact of financial development on energy consumption in emerging economies. Energy Policy, 38(5), 2528-2535.
- Sapkota, P., Bastola, U., 2017. Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America. Energy Economics, 64, 206-212.
- Seetanah, B., Vinesh, S., 2010. On the Relationship Between CO₂ Emissions and Economic Growth: The Mauritian Experience. University of Mauritius.

- Seker, F., Ertugrul, H.M., Cetin, M., 2015. The impact of foreign direct investment on environmental quality: a bounds testing and causality analysis for Turkey. Renewable and Sustainable Energy Reviews, 52, 347-356.
- Sephton, P., Mann, J., 2016. Compelling Evidence of an Environmental Kuznets Curve in the United Kingdom. Environmental and Resource Economics, 64(2), 301-315.
- Shafiei, S., Salim, R.A., 2014. Non-renewable and renewable energy consumption and CO₂ emissions in OECD countries: a comparative analysis. Energy Policy, 66, 547-556.
- Shafik, N., Bandyopadhyay, S., 1992. Economic growth and environmental quality: time-series and cross-country evidence (Vol. 904). World Bank Publications.
- Shafik, N., 1994. Economic development and environmental quality: an econometric analysis. Oxford Economic Papers, 46, 757-773.
- Shahbaz, M., 2013. Does financial instability increase environmental degradation? Fresh evidence from Pakistan. Economic Modelling, 33, 537-544.
- Shahbaz, M., Lean, H.H., Shabbir, M.S., 2012. Environmental Kuznets curve hypothesis in Pakistan: cointegration and Granger causality. Renewable and Sustainable Energy Reviews, 16(5), 2947-2953.
- Shahbaz, M., Mutascu, M., Azim, P., 2013a. Environmental Kuznets curve in Romania and the role of energy consumption. Renewable and Sustainable Energy Reviews, 18, 165-173.
- Shahbaz, M., Ozturk, I., Afza, T., Ali, A., 2013b. Revisiting the environmental Kuznets curve in a global economy. Renewable and Sustainable Energy Reviews, 25, 494-502.
- Shahbaz, M., Tiwari, A.K., Nasir, M., 2013c. The effects of financial development, economic growth, coal consumption and trade openness on CO₂ emissions in South Africa. Energy Policy, 61, 1452-1459.

- Shahbaz, M., Khraief, N., Uddin, G.S., Ozturk, I., 2014a. Environmental Kuznets curve in an open economy: A bounds testing and causality analysis for Tunisia. Renewable and Sustainable Energy Reviews, 34, 325-336.
- Shahbaz, M., Sbia, R., Hamdi, H., Ozturk, I., 2014b. Economic growth, electricity consumption, urbanization and environmental degradation relationship in United Arab Emirates. Ecological Indicators, 45, 622-631.
- Shahbaz, M., Solarin, S.A., Sbia, R., Bibi, S., 2015. Does energy intensity contribute to CO₂ emissions? A trivariate analysis in selected African countries. Ecological indicators, 50, 215-224.
- Shahbaz, M., Bhattacharya, M., Ahmed, K., 2016a. CO₂ emissions in Australia: economic and non-economic drivers in the long-run. Applied Economics, 1-14.
- Shahbaz, M., Mahalik, M.K., Shah, S.H., Sato, J.R., 2016b. Time-varying analysis of CO₂ emissions, energy consumption, and economic growth nexus: Statistical experience in next 11 countries. Energy Policy, 98, 33-48.
- Shi, A., 2003. The impact of population pressure on global carbon dioxide emissions, 1975–1996: evidence from pooled cross-country data. Ecological Economics, 44(1), 29-42.
- Sinha, A., Bhattacharya, J., 2016. Confronting environmental quality and societal aspects: an environmental Kuznets curve analysis for Indian cities. International Journal of Green Economics, 10(1), 69-88.
- Sinha, A., Sen, S., 2016. Atmospheric consequences of trade and human development: A case of BRIC countries. Atmospheric Pollution Research, 7(6), 980-989.

- Sinha, A., Shahbaz, M., Balsalobre, D., 2017. Exploring the relationship between energy usage segregation and environmental degradation in N-11 countries. Journal of Cleaner Production, 168, 1217-1229.
- Solow, R.M., 1974. Intergenerational Equity and Exhaustible Resources. Review of Economic Studies, 41(5), 29-46.
- Stern, D.I., Common, M.S., Barbier, E.B., 1996. Economic growth and environmental degradation: the environmental Kuznets curve and sustainable development. World Development, 24(7), 1151-1160.
- Stern, D.I., 2004. The rise and fall of the environmental Kuznets curve. World Development, 32(8), 1419-1439.
- Stern, D.I., 2017. The environmental Kuznets curve after 25 years. Journal of Bioeconomics, 19(1), 7-28.
- Stiglitz, J., 1974a. Growth with exhaustible natural resources: efficient and optimal growth paths. Review of Economic Studies, 41(5), 123-137.
- Stiglitz, J., 1974b. Growth with Exhaustible Natural Resources: The Competitive Economy. Review of Economic Studies, 41(5), 139-152.
- Sugiawan, Y., Managi, S., 2016. The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy. Energy Policy, 98, 187-198.
- Sulaiman, J., Azman, A., Saboori, B., 2013. The potential of renewable energy: using the environmental Kuznets curve model. American Journal of Environmental Sciences, 9(2), 103-112.
- Taguchi, H., 2013. The environmental Kuznets curve in Asia: The case of sulphur and carbon emissions. Asia-Pacific Development Journal, 19(2), 77-92.

- Tamazian, A., Chousa, J.P., Vadlamannati, K.C., 2009. Does higher economic and financial development lead to environmental degradation: evidence from BRIC countries. Energy Policy, 37(1), 246-253.
- Tamazian, A., Rao, B.B., 2010. Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies. Energy Economics, 32(1), 137-145.
- Tang, C.F., Tan, B.W., 2015. The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. Energy, 79, 447-454.
- Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO₂ emissions: evidence from India. Economics Bulletin, 31(2), 1793-1806.
- Tiwari, A.K., Shahbaz, M., Hye, Q.M.A., 2013. The environmental Kuznets curve and the role of coal consumption in India: cointegration and causality analysis in an open economy. Renewable and Sustainable Energy Reviews, 18, 519-527.
- Turner, G.M., 2008. A comparison of The Limits to Growth with 30 years of reality. Global Environmental Change, 18(3), 397-411.
- Tutulmaz, O., 2015. Environmental Kuznets Curve time series application for Turkey: Why controversial results exist for similar models?. Renewable and Sustainable Energy Reviews, 50, 73-81.
- Vollebergh, H.R.J., Dijkgraaf, E., Melenberg, B., 2005. Environmental Kuznets Curves for CO₂: Heterogeneity Versus Homogeneity. Environmental and Resource Economics, 32, 229-239.
- Wang, K.M., 2012. Modelling the nonlinear relationship between CO₂ emissions from oil and economic growth. Economic Modelling, 29(5), 1537-1547.

- Wang, S.S., Zhou, D.Q., Zhou, P., Wang, Q.W., 2011. CO₂ emissions, energy consumption and economic growth in China: a panel data analysis. Energy Policy, 39(9), 4870-4875.
- Wang, Y., Zhang, C., Lu, A., Li, L., He, Y., ToJo, J., Zhu, X., 2017. A disaggregated analysis of the Environmental Kuznets Curve for industrial CO₂ emissions in china. Applied Energy, 190, 172-180.
- Xu, B., Lin, B., 2015. Factors affecting carbon dioxide (CO₂) emissions in China's transport sector:
 a dynamic nonparametric additive regression model. Journal of Cleaner Production, 101, 311-322.
- Xu, B., Lin, B., 2016. Reducing CO₂ emissions in China's manufacturing industry: Evidence from nonparametric additive regression models. Energy, 101, 161-173.
- Yaduma, N., Kortelainen, M., Wossink, A., 2015. The environmental Kuznets curve at different levels of economic development: a counterfactual quantile regression analysis for CO₂ emissions. Journal of Environmental Economics and Policy, 4(3), 278-303.
- Yaguchi, Y., Sonobe, T., Otsuka, K., 2007. Beyond the environmental Kuznets curve: a comparative study of SO₂ and CO₂ emissions between Japan and China. Environment and Development Economics, 12(03), 445-470.
- Yavuz, N.Ç., 2014. CO₂ emission, energy consumption, and economic growth for Turkey:
 Evidence from a cointegration test with a structural break. Energy Sources, Part B:
 Economics, Planning, and Policy, 9(3), 229-235.
- York, R., 2007. Demographic trends and energy consumption in European Union Nations, 1960–2025. Social science research, 36(3), 855-872.
- York, R., Rosa, E.A., Dietz, T., 2003. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46(3), 351-365.

- Zambrano-Monserrate, M.A., Valverde-Bajana, I., Aguilar-Bohorquez, J., Mendoza-Jimenez, M.J., 2016. Relationship between Economic Growth and Environmental Degradation: Is there Evidence of an Environmental Kuznets Curve for Brazil? International Journal of Energy Economics and Policy, 6(2), 208-216.
- Zhang, S., Liu, X., Bae, J., 2017. Does trade openness affect CO₂ emissions: evidence from ten newly industrialized countries? Environmental Science and Pollution Research, 1-10.
- Zoundi, Z., 2017. CO₂ emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renewable and Sustainable Energy Reviews, 72, 1067-1075.